IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

1984
Nonlinear finite element analysis of piles in integral
abutment bridges

Pe-Shen Yang
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
& Dart of the Civil Engineering Commons

Recommended Citation

Yang, Pe-Shen, "Nonlinear finite element analysis of piles in integral abutment bridges" (1984). Retrospective Theses and Dissertations.
8231.
https://lib.dr.iastate.edu/rtd /8231

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com



http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8231&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=lib.dr.iastate.edu%2Frtd%2F8231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/8231?utm_source=lib.dr.iastate.edu%2Frtd%2F8231&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce

this

document, the quality of the reproduction is heavily dependent upon the

quality of the material submitted.

The

following explanation of techniques is provided to help clarify markings or

notations which may appear on this reproduction.

™

3.

The sign or “target™ for pages apparently lacking from the document
photographed is “Missing Page(s)™. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

. When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

When a map, drawing or chart, ¢tc., is part of the material being photographed,
a definite method of “sectioning™ the material has been followed. It is
customary to begin filming at the upper left hand comer of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.






Yang, Pe-Shen

NONLINEAR FINITE ELEMENT ANALYSIS OF PILES IN INTEGRAL
ABUTMENT BRIDGES

lowa State University Pu.D. 19684

University
Microfilms
International xon. zeswRosd. ann artor, nasics






Nonlinear finite element analysis of piles

in integral abutment brid;u

by

Pe-Shen Yang

A Dicsertation Submitted to the
Craduate Faculty in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Civil Enginecering
Major: Structural Engineering

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Major Depdrtment

Signature was redacted for privacy.

For the Graduate College

Yowa State University
Ames, Iowa

1984



1.

2.

3.

i1

TABLE OF CONTENTS

INTRODUCTION

l.1. Statement of the Froblem
1.2. Background

1.3. Objective and Scope

SURVEY OF CURRENT PRACTICE FOR BRIDGES WITH INTEGRAL
ABUTMENTS

2.1. Oblectives
2.2. Method of Investigation
2.3. Trends of Responses
2.3.1. Survey conducted by Bruce Johnson
2.3.2. Survey conducted by Yang
2.k. Summary and Conclusicus
SOIL CHARACTERIZATION
3.1. Methods of Analysis
3.1.1. Analytical studies
3.1.2. Experimental studies
3.2. Material Idealization
3.2.1. General
3.2,2, Modified Ramberg-Osgood model
3.2.3. Cyclic model
3.3. Soil Behavior
3.3.1. Analytical approximations by others

3.3.1.1. Lateral resistance-displacement

(p-y) curve

Page

N = N W =

- =N O O



e

3.3.2.

3.3.3.

ii1

3.3.1.2, Load-slip (f=z) curve
3.3.1.3. Load-gettlement (q-z) curves

Parameters for the modified Ramberg-Osgocd
equation

Typical Iova soil

THREE-DIMENSIONAL FINITE ELEMENT PILE MODEL

h.1. Introduction

k.2. Three-Dimensional Beam Finite Element

k.2.1.
h.2.2.
k.2.3.

!‘0201‘0

2‘02050

Coordinate systems
Strain-displacement relationship

Tangent stiffness matrix in element ccor-
dinate systen

Three-dimensional transformation matrix and
coordinate updating

Hodal forces computation

k.3. Soil Spring Finite Element

k.3.1.
h.S.Z.
k.3330

So1l model description

Soil springs
Backwall soil model

4.k, Two-Dimensional Version

z"k .1.

Specialization from the three~dimensional
model

BASIC HONLINEAR SOLUTION TECHEIQUES

5.1. The Incremental Load Technique

5.2. Newton-Raphson Iteration Method

5.3. Convergence Criteria

5.4. The Complete Solution Procedure in Detail

Fage
a5
26
26

et
28
28
a8

30

35

43

k7
52
52
3
55
55
55

56

57

62
63



$.5.

iv

Cuidelines for Program Usage

6. ANALYTICAL AND EXPERIMENTAL VERIFICATIONS

T.

6.1.

6.2'

Analytical Verification

6.1.1. Two-dimensional analytical verification

6.1.1.1.
6.1.1.2.
6.1.1.3.
6.1.1.k,
6.1.1.5.
6.1.1.6.
6.1.1.7.

Beam~column problem

Short column problem
Snap-through problem .
Williams' toggle problem
Tvo-dimensional frame problem
Thermal problems

gSoil problems

6.1.2. Tnree-dimensional analytical verification

6.1'2.1.

6.1.2.2.

60102.3.

Large deflection analysis of a
shallov arch

Large displacement threc-
dimensional analysis of a
45° vend

Soil problems

Experimental Verification

6.2.1. Load transfer in end~bearing steel H piles

6.2.2. Lateral load tests on drilled piers in
stiff clay

6.2.3. Llateral load tests on timber piles

6.2.k. Pile response to axial and lateral loading

PILE BEHAVIOR IN IHTEGRAL ABUTMERT BRIDGES

T.1.

Introduction

Fage
€6
€9
69
69
69
70
n
(¢}

T2
T2
T2
T2

13
Th
73

75
76

4

8o
80



8.

2.
10.

- "

12,

Page

T.2. Steel Piles in Nonekeved Bridges go
T7.2.1. Friction and end-bearing piles 8o
T.2.2. BEffect of cyclic lateral displacements 82
7.2.3. Effect of pinned@ pile top 83

T.3. Nonskeved Bridge Example 8k
7.3.1. Bridge studied 8l
7.3.2. Mathematical model of the bridge 8s
T.3.3. Numerical results ' 8é

T.k. Steel Piles in Skeved Bridges 87
7.4.1. Bending about the strong axis 87
T.:.2. Priction and end-bearing piles bending about 89

the 45° axis

T.k.3. Effect of pinned pile top 90

7.5, Skeved Bridge Example 20
7.6. Timber and Concrete Piles 92
SUMMARY, CONCLUSIONS, AND FURTHER WORK 925
8.2. Summary : 95
8.2. Conclusions 98
8.3. Purther Work 99
REFERERCES 170
ACKROWEDGEMENTS 181
APPEEDIZ £: GUESTIONBAIRE FOR BRIDGES WITH INTEGRAL 182a

APPENDIX B:

ABUTMENTS AND SUMMARY OF RESPONSES

QUESTIONKATRE FOR SKEWED BRTIDGES WITH INTEGRAL  19la
ABUTHENTS AMD SUMMARY OF RESPONGES



vi

13. APPENDIX C: IAB3D AND IAB2D PROGRAM INPUT

13.1.
13.2.
13.3.
13.h.

IAB3D Program Input
Sample Probleme for IAB3D Computer Program
IAB2D Program Input
Sample Problem for IABZ2D Computer Program

Page
197
197
205
209
26



Table 1.
Table 2.

Table 3.
Table L.
Table 5.
Table 6.

Table 7.
Table 8.
Table 2.
Table 10.
Table 11l.
Table 12.
Table 13.
Teble 1k,
Table 15.

Table 16.
Teble 17.

vii

LIST OF TABLES

Integral abutment bridge length limitutions (1981)

Flow chart for determining the reversal values of

loading and unloading

Analytical forms of p=y curves

Analytical forms of f-z curves and parumeters
Analytical forms of q-z curves and parameters

Faramoters used in the modified Ramberg-Osgood
models for clay &nd gand

Soil properties and curve parameters for sand
Soil properties and curve parameters for clay
Ramberg-0sgood parameters for f-z curve
Ramberg-0ogood parameters for gq-z curve

Soil characteristics

Modulus of elasticity for timber piles

Material properties of timber and comcrete piles

Input data structure overview

Input cards for sample problem l-a 45°
centilevered bend beam

Input cards for sample problem 2 - soil problem

Input data for sample problem 3 - State Avenue
bridge

Page
100
101

102
10k
105
106

107
109

112

112
12
197
206

207
aT



Fig.
Fig.
Fig.

Fig.
Pig.

Fiso

Fig.

Fig.

Fig.

Fig.

¥ig.

Fig.
Fig.
Fig.
Fig.

Pig.

1.
2.
3.

10.

12.
13a,
13b.
1k,

15.

vitl

LIST OF FIGURES

Crosg-gection of a dbridge with expansion joints
Cross=gsection of a bridge with integral abutments

Cross-gection of the integral abutment bridge with
soil«pile interaction

Typical p=y curve with Ramberg-Osgood constants

Nondimensional form of the modified Ramberg=Osgood
cquation

Hysteresis loops in accordance with modified
Ramberg-0sgood cyclic model withn= 1.0

The determination of reversal values for loading
and unloading

Reduction factor a [13]

Coemparison between the analytical forms of the
P=¥, f=3, and q=-z curves by others and the modifiecd
Ramberg~0szc0od models

A combination of a one-dimensional idealization
for the pile and an equivalent nonlinear spring
idealization for the soil

Nonlinear finite element analysis approaches: (a)
Bulerian approach, (b) Lagrangian approach, (c)
updated Lagrangian approach

Cocordinnte systems and nomenclature

Element layering for two-dimensional analysis
Element layering for three-dimensional analysis

The coordinate updating of K node in three-
dimensional beam column element

External and internal forces and displacements
acting or the pile element

Page
113
113
214

115
115

116

117

118

119

120

121

122
123
123
12k



Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Pig.
Fig.

Pig.
Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Pig.
Fig.
Pig.

16s.

16b.

17.

18.

19.

20.

5.

26.

ix

Idenlized backwvall soil model in integral
bridge abutments

p=y curve for backwall soil model in element
y Qirection

Plecewige lineur sclution for a single degree-
of=freedom system

Characteristics of Newton-Raphson iteration in
a simple one-degree-of-freedon

Increment-iteration or mixed procedure in a multi-

degree-of-freedom structure (Newton-Raphson solution

of the equation F = ¢ (D))

Load-displacement curves for beam=-column problem
A short column subjected to applied lcad
Cross section A-A

M-8 characteristics

Load-deflection characteristics of enap-through
problem

Load-deflection characteristics of toggle
Load-deflection characteristics of two-
dimensional portal frame with fixed base and
hinged base

Large deflection analysis of shallow arch under
concentrated load

Three~-dimensional large deflection analysis of
a b5° circular bend

Deformed configuration of a 45° circular bend
HP1kxT3 pile used to check soil response

Soil response for cyclic loads in ¥, Z directions
Soil response for cyclic loads in Y2 direction
Load-settlement curve for HP1ix117 test pile

Load~-displacement curves, pier 1.

Fage
126

126

127

128

130
131
131
131

132

133
134

135

136

137
138
239
1k0
151
143



Fig. 33.
Pig. 3b.
Flg. 35.
Fig. 36.
Fig. 37.

Fig. 38.
Pig. 39.

Fig. LO.

Fig. bl.

Fig. W2,

Pig. k3.

Fig. k.

Fig. bSe.

Pis. ka .

Fig. k6.

Pig. L7T.

Load-displacement curves, pier 2
Load-deflection curve for piles l-A and 1-B
Load-deflection curve for piles 2-A and 2-B
Moment versus depth diagram for pile 1-A

Schematic diagram of the pile and
generslized soil profile

Load versus settlement for the axial load test

Lateral load versus displacement for the combined
load test (with a 60-kip axial lcad)

Pile deflected shapes (a) after a specified

displacement &, (solid line), (b) applied vertical

locad V in case (e) (dashed line)

Vertical load-settlement curves vith specified
lateral displacements, &, (0, 1, 2, 3, b, in.)
for very stiff clay (friction pile)

Vertical load-settlement curves with specified
displacements, & (0, 1, 2, 4 in.) for soft clay
(end-bearing pile)

Vertical lcad-seottlement curves with specified
displacements, &, (0, 1, 2, b in.) for loose
sand (end~bearing pile)

Nondimensional) forms of ultimate vertical
load ratio versus specified lateral aisplace-
ments &, , in Iows soils {(friction pile)

Nondimensional forms of ultimate vertical loed
ratio versus specified lateral displacements Ah’
in Iowa soils (end-bearing piles)

Hondimensional forms of ultimate vertical load

ratio versus specified lateral displacements Ab’
in Iowa soils (end-bearing piles)

NMondimensional forms of ultimate vertical load
ratio

Plan and elevation of bridge

Page
1Lh

1bs
146
147
148

149
150

15

152

153

153

154

15%

154

155

156



Fig.
Pig.
Fig.

Fig.
Pig.
Pig.

rig.

Fig.

Fieg.

Fig.

Fig.

Fig.

y!s .

Fig.

L8.
hg,
$0.

se.
s3.

Sk,

55a.

55b.

56.

.

58.

59.

60.

xi

Transverse gsection through deck
Section through abutment

Mathematical model of the State Avenue bridge
and equivalent cross-gsectiocnal properties

Section through abutment and soil profile
The finite element mathematical model

Vertical locad-gettlement curves for
nonskeved dbridge

Free body diagram of the concrete beam and abutment

Ultimate vertical lcad ratic (end-bearing piles
about strong axis)

Ultimate vertical lcad ratio (end-bearing piles
about strong axis)

Load-gettlement curve for soft clay, stiff clsy,
and very stiff clay (end-bearing piles with fixed
pile heads bending about strong axis)

Utimate vertical lcad ratio (end-bearing piles
about 45° axis) in Iova soils

Ultimate vertical lcad ratio (end-bearing piles
with )mnca pile heads bending about the strong
axis

Plan view of skeved bridge and its global coordi-
nates, before and after thermal expansion (See
Pig. 48. for bridge cross section)

Load~Bettlement curve for all pile orientations

FPage
157

158
159

160
161
162

163

164

1654

165

166

167

168

169



1. INTRODUCTION

1.1 Statement of the Problem

The inercasing popularity of integral abutment designs for bridges
has been recognized by many state highway agencies. At the present time
in Iowa, theoretical piling stresses limit the maximum length of concrete
bridges with intesral abutments %o 265 feet. Although the performance of
thege bridees hae certainly been satisfactory, other states, e.g., Socuth
Dakota ané Tennessee, have been allowing integral abutment dbridges sig-
nificantly longer than this with apparent success. Long bridges are par-
ticularly susceptible to damage from thermal expansion and contraction
bocause of the relatively large displacements associated with annusl
temperature variations. Historically, & system of expansion joints, roller
supports and other structural releases are provided on longer bridges to
permit thermal expansion. However, providing expansion devices on bridges
not only increases the initial cost of construction, but also increases
associated maintenance costs and, frequently, they do not operate as in-
tended.

Integrel abutment bridges provide an attractive design alternative
because expansion joints are not present. Thermal expansion, however,
must be relieved or accounted for in some manner. In an integral abutment
bridge, the piles are usually the most flexible elements and are expected
to accommodate the induced movements due to thermal expansion. The maxi-
mum thermal expansion which can be alloved by the piles without reducing
the vertical load carrying capacity of the pile is of primary importance
in defining the safe lensth of integral abutment bridges. If this length



can safely be increased, the economic advantages of integral abutments
can be realized for longer bridges.

Integral abutment bridges fall into two categories: nonskeved and
skewed., Site conditione determine vhether or not a skeved dbridge is
necessary. The design of a skeved dridge presents detailing and analysis
problems. For skewved bridges with integral abutments, the movements
causod by thormal expansion and contraction are more complex than they are
for nonskeved bridges vith integral atutments. These thermal-induced move-
ments involve not only the longitudinal direction, but transverse direction

as vell.

1.2. Background

Prior to World War II, most bridges vith an overall length of 50 feet
or more vere constructed with some form of expansion joints. Pericdic
inspection of these bridges revealed that expansion joints tended to freeze
and close and 4id not operate as intended. Close inspection of such
bridges also indicated that there vas no serious distress associated with
the frozen or closed expansion joints. This led to the advancement of the
case for continucus construction.

Continuity in steel stringer and other types of bridges has been
accepted practice since the early 1900s. In addition to the inherent
economy of continuous beams, wherein negative moments over interior sup-
ports serve to reduce midspan positive moments, one line of bearing devices
was automatically eliminated at each interior support. The predominant
problem with these continuous bridges was at the abutments, where some kind

of expansion joints were required. An example of a bridge with expansion



Joints is shown in Fig. 1. The expansion joints at the abutments allowved
penctration of vater from the backfill and roadway into the bearing areas
and onto bridge seats. The joint could then be forced closed, resulting
in broken backwalls, cheared anchor bolts, damaged roadway expansion
devices and other problems. Maintenance costs associated with these
problems accelerated the development of integral abutments.

Fig. 2 shows an example of a bridge with integral abutments, each
abutment is supported by a single row of vertical piles extending into the
abutments. In addition to being aesthetically pleasing, integral abut—
ments offer the advantage of lower initial cost and lowver mintmc costs.
Exponsive bearings, Jjoint material, piles for horizontal ecarth loads and
leakage of water through the joints are all eliminated.

Today more than half of the state highway sgencies have developed
design criteria for bridges without expansion joint devices. These design
criteria are bvased on years of experince. This development led to wide
variations in design criteria from state to state. At this time, full-
scale field testing and sophisticated rational design methods are not
commonly used &5 & basis for increasing allowvable lengths.

In 197k, the éifference in maximum asllowable length for concrete bri-
dges using integral abutments between Kansas and Missouri was 200 feet [1].
A survey conducted by the University of Missouri in 2973 [2] indicated
that the allowable length for integral abutment concrete bridges in some
states vas 500 feet while in others it was only 100 feet. Continuous
steel bridges with integrsl abutments have performed successfully for
years in the 300-foot range in such states as North Dekota, South Dakota
and Tennessee. Continuous concrete structures 500-600 feet long with



L

integral abutments have been constructed in Xansas, California, Colorado

and Tennessee [3].

1.3, Objective and Scope
The purpose of this study is to investigate the effect of thermal-

induced movement of the pile on the vertical carrying capacity of the
pile in integral abutment bridges.

As part of this study the highvay departments of all states in the
U.8. vere contacted to find the extent of application of integral abut=-
ment bridges and to survey the different guidelines used for analysis and
design of integral abutment bridges.

An algorithm based upon a nonlinear finite element procedure is de-
veloped to study the soil-pile interaction 1", integral abutment bridges.
The finite element idealization consists of a one-dimensional idealization
for the pile and nonlinear springs for the foundation. Incremental finite
clements with an updated Lagrangian formulation and mtcriai nonlinear~
ities are used. For the purpose of treating arbitrary large rotations in
three dimensions, node orientations are described by unit vectors. De-
formations are defined by the orientation of these vectors relative to
& rigid vody element coordinate vhich is along the beam chord. Updating
of the element coordinates in three dimensions is also described. An
incremental and iterative procedure is used for the solution of the non-
linear probvlem. The IAB2D and JAB3D (Integral Abutment Bridge Two-
and Three-Dimensional) computer programs are developed to solve the
nonlinear soil-pile interaction problems for both three- and two-



dimensional cases. A number of experimental and analytical examples
are analyzed to establish their reliability.

Finally, many analytical examples are studied in vhich a pile is given
a lateral displacement to simulate the bridge expansion. A real integral
abutment bridge is used to study the effect of skew and nonskev on the
vertical carrying capacity of the pile.
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2. SURVEY OF CURRENT PRACTICE FOR BRIDGES WITH INTEGRAL ABUTMENTS

2.1. Objectives
As bvackground to the theoretical investigation of bridges with inte-
gral abutments, & survey of several states vas made to obtain information

on the design and performances of such bridges.

2.2 Method of Investigation

Burveys concerning integral abutments have previocusly been conducted
{1, 2). Responses indicate that most highvay department agencies establish
their own limitations and criteria in designing integral abutments. The
tases of these limitations and criteria are shown to be primarily empirical.

Tvwo survey questionnaires were prepared in cooperation with the Office
of Bridge Design, Highvay Division, Iova Department of Transportation, to
obtain information concerning the use and design of integral bridge abut-
ments. The first survey questionnaire was conducted by Bruce Johnson
[k, 5]. The survey questions were directed at limitations in bridge
length, type and skev. The ;tatea vere also asked vhat assumptions were
made in determining fixity conditions and loads for design of the piling
and superstructure. The questionnaire wes sent to the 50 states and
Puerto Rico. A questionnaire was also sent to the Direct Construction
Office, Region 15, Pederal Highway Administration (FHWA). A copy of this
questionnaire and response fram each of these agencies are contained in
Appendix A. The second survey questionnaire which was based on the re-
sponses obtained by the first survey questionnaire was prepared and con-
ducted by Yang [6]. These survey questions concerned pile orientations
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in the integral abutments. The states wvere also asked what structural
assumptions vere being made in determining fixity conditions on pile head
and directions of thermal expansion and contraction of the integral abdut-
ments in skewed bridges. In addition, other questions related to the
treatment of approach slad, dackfill, and pile cap. This questionnaire
vas gent to the 28 state highway departments and the Direct Construction
Office of FHWA, Region 15 vho use integral abutments. A copy of this
questionnaire and responses from each of these agencies are contained in
Appendix B.

2.3. Trends of Responses
2.3.1. Survey conducted by Bruce Johnson
Of the 52 responses received, 29 indicated that their states use
integral-type abutments. A fev of these, such as New Mexico and Virginia,
are Just beginning to use them: their first integral abutment bridge vas
either recently designed or currently under construction.
Of the 23 vho d4id not use these abutments, there vere four groups
having similar responses.
* Fourteen states have no plans to consider using this type of
abutment.
* Five states responded that they have not previocusly considered
the possibility of fixing the girder ends to the abutments.
* Three states have built some integral abutments or semi-integral
endwalls but currently do not use them in new bridge construc-

tion.



Three states have built some integral abutments or semi-integral
endwvalls but currently do not uge them in new dridge construction.
One state indicated that they were presently investigating the
possibility of using integral abutments.

The following are scme of the reasons given for avoiding the use of

integral abutments.

The possibility of a gap forming between the backwoll and the
roadvay fill (two states):

Increased substructure lcads (cne state);

The possible attenuation of a bump at the ends of the bridge

(cne state)s

The lack of & raticnal method for predicting behavior (one state);
The possible additional stress on approach pavement joints (two
states); and

Cracking of the backwall due to superstructure end span rotation

and contraction (tvo states);

The following is a discussion, keyed to the survey question numbers,

of the responses received from states using integral abutments (See Ap~

pendix A).

1. Most of the states using integral abutments do so because of cost

savings. Typical designs use less piling, have simpler construction

details, and eliminate expensive expansion jJoints.

2 end 3.

Table 1 shows bridge length limitations currently being used.

In summary, 70 percent or more of those states using integral abut-

ments feel comfortable within the following range of limitations:

steel, 200-300 feet; concrete, 300-400 feet; and presiressed concrete,



300-450 feet. The difference in concrete and steel length limitations
reflects the greater propensity of steel to react to temperature
changes. There are three states using longer limitations for each
structure type. They typically have been building integral abutments
longer than most states and have had good mcus with them. The
move toward longer bridges is an attempt to achieve the good per-

formance cbserved on shorter bridges for structures at the maximum
practical length limit.
Only ‘a fev states responded to the question regarding limitations on

piling. Five states use only steel piling vith integral abutments.
Only four of the 29 agencies indicated that the webs of steel piles
vere placed perpendicular to the length of the bridge. At least cne
state began using integral abutments with steel piling placed in the
usual orientation (vith the pile web along the length of the bridge).
This led to distress and cracking at the beam-abutment interface, and
the state eventually began to rotate the piles by 90 degrees for
greater flexibility. Three others allow concrete and steel but not
timber. No length limitations for timber piling were given by states
other than Iowa which allows bridges less than 200 feet.

5 and 6. Twenty~-two states indicated that the superstructure was assumed

pinned at the abutments. Five assumed partial fixity, and one assumed
total fixity. Seventeen responses noted that at the pile top a pinned
assumption was made; four reported a partial fixity assumption; and

five states believe the pile top is totally fixed. 8ix of the states



7.

8.

9.

10.

10

vhich assume a pinned condition actually use a detail designed to
eliminate moment constraint at the joint.

Only a fev states consider thermal, shrinkage, and soil pressure
forces vhen calculating pile lcads. Seversl states noted on the
questionnaire that only vertical loads are used in design. Of those
that do consider pile bending stresses, eight use thermal forces,
three use shrinkege forces, and ten consider soil pressure.

Most states indicated that bending stresses in abutment pilings wvere
neglected. There vere three states, hovever, that assumed a locaticn
for a point of zero moment and used combined bending and axial stresses.
Also, prebored holes vere used by three states to limit bending
stresses by reducing the soil pressure.

Most states indicated that a free-draining bvackfill material is used
behind the abutment. Some responses, however, indicated that problexzs
were encountered such as undermining associated with granular soils,
One state said, "Have recently experienced problems with noncohesive
material behind this type of abutment. Backfill material should be
cohesive and free frou' cobbles and boulders.” Six other states use
common roadway fill behind the abutment.

All except four states rest the approach pavement on the integrel
abutment. One state indicated that a positive tie connection was
used to connect the slab. A few states indicated that they had ex-

perienced problems when reinforced approach slabs were not used.
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11. All except three states reported lover construction and maintenance

costs using integral abutments. One said costs vere the same, and

tvo did not respond to the question.

The folloving are some isolated comments that vwere made about

construction and maintenance probvlems using integral abutments:

b.

Qe

d.

f.

h.

i.

Longer wingvalls may be necessary with cast-in-place, post-
tensioned bridzes for backwall containment

The proper compaction of backfill material is criticalj;

Careful consideratiocn of drainage at the end of the bridge is
necessarys

Wingwall concrote should be placed after stressing of cast-in-
place, post-tensioned bridges;

The effects of elastic shortening after post-tensioning should

be carefully considered, especially on single span bridges;

Proper placement of piles is more critical than for conventional
abutments;

Wingwalls may need to be designed for heavier losds to prevent
cracking;

Adequate pressure relief joints should be provided in the approach
pavement. to_ avoid interference with the functioning of the abutment;
Possible negative friction forces on the piles should be accounted
for in the design; and

Wide bridges on high skew require special comnsideration including
strengthening of diaphragms and wingwall-to-abutment connections.
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2,3.2. Survey conducted by Yang
Of the 28 responses received, 26 indicated the use of integral abut-

ments on skeved bridges. Among these states, Virginia has designed its
first integral abutment skeved bridge with a small skew (10°) and a rela-
tively small anticipated movement at each abutment (¢ 3/8"). The states
of Connecticut and Oklahoma indicated that they do not use integral abut-
ments on skeved bridges. While Connecticut has not constructed any
integral abutments on a skew, it has constructed one nonskeved integral
atutment bridge. Oklahoma, in contrast, considered integral abutments
on skews inappropriate because of inteogral abutment displacement.

Cne of the purposes of this survey was to collect methods of anale
yois and design dotails of integral abutments on skew bridges. Following
is a discussion, keyed to survey question numbers, of the responses
received from states using integral abutments on skewved bdridges (also see
Appendix B).

1. The pile orientations in integral abutments on skewed bridges shown
in the first survey question can be classified into four categories:
(1) the web of the pile perpendicular to roadway center line (6 states);

(2) the web of the pile parallel to roadway center line (1 state);

(3) The web of the pile parallel to center line of the abutment (10

states); (i) the web of the pile perpendicular to center line of the

abutment (15 states). In addition, three states use circular piles

in integral abutments on skewed bridges. One major difference between

skeved and nonskeved integral abutment bridges is that when both are

subjected to thermal expansion and contraction, the former piles will
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experience biaxial bending. The responses shoved that 15 of 26 states
have adopted the pile orientation so that tending will be primarily
about the strong axis.

Most states do not have any clear, theoretical, experimental, or
empirical bdases for selection pile orientations. Idaho of'ficials
assumed some creep in the soils surrounding the piles and also assumed
that a redistribution of stresses will ocour since thermal forces are
generally applied gradually. Also, the restraint provided by the
integral abutment vas assumed to reduce the magnitude of the thermal
movezent; orienting the piles with the strong axis parallel to the
conter line of the bearings vas assumed to give more rigidity for earth-
quate loads vhen liquification of embankment is anticipated. Vermont
oriented the piles to resist the force of earth pressure from the
abutment backfill rather than permit the thermal expansion. California
explained its policy of orienting the wed of the piles perpendicular
to the center line of the abutment (see Appendix B) as follows: for a
square bridge, such orientation of piles results in bending about the
strong axis of the piles because of both thermel forces and active soil
pressure. When the bridge is skewed, howvever, temperature forces act
along the center line of the roadway, not parallel to the pile web,
and active soil pressure acts against the strong axis of the pile.
Teupem‘mré effects are somevhat compensated for by predrilling for
driven piles and filling the voids with pea gravel or sand (el.

Colorado replied that they were unaware of any distress in the
piling. In a few cases, with cast-in-place post-tensioned bridges
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vith integral sbutments, cracks have been detected in the abutment wall
at the intersection of the superstructure and the adbutmnent. The state
suspected that the cracks resulted primarily from movements of the
superstructure caused by elastic shortening and creep from the post-
tensioning forces. North Dakota has been building bridges for about 18
years using this method and so far is unavare of any prodblems. Accord-
ing to Iowa bridge engineer H. Gee cited in (6], pile orientation with
the wveb of the pile perpendicular to the roadvaey center line is not
considered in design because of construction vork aifficulty in
arranging the reinforcement in the integral abutments. Thermal-induced
biaxial bending stressas on piles can be avoided by using circular

pipe piles. The major disadvantages are that the vertical bearing
capacities of these piles are usually less than those of the stecl

H piles, and they are stiffer than H piles abtout the weak axis.

The second survey question revealed the folloving. (1): Twvo states
indicated that a roller assumption was made at the pile top; eight
reported a pinned assumption; one assumed partial fixity; and eight
states assumed a totally fixed pile top. These assumptions were
actuslly based on the restraint conditions on the pile top. In Iowa,
the pile top is completely restrained by spiral reinforcement in the
pile cap, and total fixity is essumed. For a pinned assumption, the
top portion of piling is enclosed with a flexible material before
casting in the concrete abutment [6]. (2) and (3): Only a few states
consider thermal, shrinking and soil pressure forces vhen celculating
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pile loads. Following are scme of the remarks made by various

states regarding thermal effects in integral abutments on skewved

bridges:

* Asgume that the pile is fixed a certain depth below the bottom of
the pile cap and any thermal movement is accomplished by bending
in the pile.

* Thermal expansion parallel to the pile cap can be resisted by the
friction force between the backfill and the end vall.

* fThe battered piles are adopted in the integral abutments to resist
thermal movement.

* Shear keys are used on the bottom of the pile cap to prevent lat-
eral movement of the pile cap on extreme skevs (40° 2).

e If the bridge design has a small skew (< 10°) and a relatively
szall anticipated movement at each abutment (& 3/8"), no special
consideraticn need be given beyond that of a 0° skew condition.

Most states indicated that a free-draining granular material is used

as backfill behind the abutment. One state uses 1-1/2 feet of porous

backfill from subgrade to the bottom of the integral abutment along
with 6-inch diameter pipe underdrain. Beyond that, normal job site
available material is used. Some responses, however, indicated that
backfill compaction has always been something of a problem with
settlement just off the end of the bridge. 8everal states indicated
that rigid pile cap has been used, and pile was cast into a pile cap
one to two feet long. 7Two states indicated that the pile cap is de-

signed as a reinforced continuous beam over the piling.
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The survey respocnses show, in general, that the approach slab can
be tied to the abutment with dowels and moved back and forth with the
superstructure if a construction joint is provided betveen the approach
slab and the bridge slab. South Dakota stated that at least one
approach slab panel with curd and gutter section attached to the
bridge end is necessary to prevent erosion of the shoulder tehind
the abutment wing. One state pointed cut that while an expansion
Joint is specified betveen rigid pavement and the approach slab, no
special treatment is specified for flexidble pavement. In Colorado,
the approach slab vas used if the bridge length was over 200 feet.
Following are scme additonal comments on skeved bridges vith integral
obutments:
¢ Scme of the piles in the abutment have to be battered to resist

the active earth pressure acting behind the abutment.

* Rotational forces from the lateral earth pressure on the end walls
cause a failure of anchor bolts which connected the exterior girders
to the abutments.

e For a cast~in-place bridge, the ends of steel piles may be cast
into the abutment concrete vhich is reinforced such that it is
considered essentially integral.

¢« Piles may be prebored for a distance of 5 to 20 feet below the
bottom of the pile cap.

* 8Since the piles are oriented to allow bending about the weak axis,
any stresses caused by rotation will only stress the ocutmost flange
fibers and not the web and center portions of the flanges. When
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the abutment is skewed, some twisting may be induced in the piles
vhen the structure deflects, but this prodblem can be considered

negligidble.

2.h. Summary and Conclusions

There is wvide variation in design assumptions and limitations among
the various states in their approach to the use of integral abutments.
This is largely due to the empirical hasis for development of current
design criteria. It is recognized, hovever, that assumptions concerning
oend fixity and soil reaction may substantially affect the results. A
simple rational method of accurately predicting pile stresses would be
valuable to the current state-of-the-art in integral asbutment design.

The states that use integral abutzments are generally satisifed with
performance and believe they are economical. Same problems have been
reported, hovever, concerning secondary effects of mMuble lateral
displacements at the abutment. These include abutment, wingwall and
pavement distress and backfill erosion. Some states reported that
solutions have been developed for most of the i1l effects of abutment
movements. They include: (1) additional reinforcing and concrete
cover in the abutment, (2) more effective permanent jJoints which allow
thermal movements to occur, and (3) positive control of bridge deck
and roadway drainage. )

Por integral abutments on skeved bridges, 15 states orient their
piles with the web of the piles perpendicular to the center line of the
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abutment so that bending will be primarily about the strong axis. Thus,
thermal induced biaxial bending stresses will be introduced into the piles.
The survey responses ghov that most states ignore the thermally induced
bending stresses due to transverse and longitudinal thermal mMmts.

No special treatment is usually given to the backfill and pile cap
on skeved bridges, and they might be constructed in the same vay as
nonskeved bridges. As for the approach slab, it can be tied to the abut-
ment with dowels or an expansion joint may be provided between the ap-
proach slab and the bridge slab.
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3. SOIL CHARACTERIZATION

3.1. Methods of Analysis
3.1.1. Analytical studies

Analysis and design of laterally and/or axially lcaded piles is,
primarily, empirical, tased on data from full-scale tests of laterally
and/or axially loaded piles [7 - 10]. However, in recent years, extensive
research and development have been undertaken to predict theoretically
the behavior of the laterally and/or axially lcaded piles {11 - 16]). In
general, two basic approaches have evolved: the subgrade reaction approach
and the elastic approach.

The subgrade reaction was originally proposed by Winkler in 1867
when he represented the soil as a series of unconnected linear elastic
springs as shovn in Fig. 3. In this method, the continucus nature of
the soil medium is ignored. Such factors as nonlinearity, variation of
soil stiffness with depth and layering of soil profile can be incorporated
into the method [13]. Several methods have been used to account for soil
nonlinearity (17 - 19], including an elastic-plastic Winkler model [17]).
One of the more widely used approaches has beer proposed by Reese et el.
(19 ~ 23] by using a number of soil resistance-displacement curves for
the soil at various points along the pile.

The elastic approach in which the soil is considered as an elastic
continuum has been described by several investigators [15, 2k - 28], In
most of these approaches, the pile is divided into a mumber of uniformly
loaded elements, and & solution is obtained by imposing compatibility

between the displacements of the pile and the adjacent soil for each
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element of the pile. The elastic method can also be used to give approx-
imate solutions for variations in soil modulus with depth and for layer
systems [13]).

A versatile method of analysis vhich permits the inclusion of all
the factors mentioned above and also makes a three-dimensional formulation
possible is the finite element method. A detailed description of the
finite element formulation used in the study is given in Chapter L.

Input from many of the above investigators has been used in formulating
the model. ‘

3.1.2. Experimental studies
Numerous experimental research projects on piles subjected to verti-

cal and/or lateral loading in the laboratory or field have been performed
in recent years. 6eed and Reese studied a small, displacement-type
friction pile vhich vas driven into a nonsensitive clay. In that study,
the load-distribution curves and load-slip curves (f-z curves) for a
friction pile vere first defined (23]. Matlock [20), Reese and Welch [21],
and Reese, Cox, and Koop [22] also performed experimental work on soft clay
stiff clay, and sand, respectively, to predict lateral resistance-dis-
placement curves (p-y curves) for laterally loaded piles. A curve de-
scribing the loed-settlement behavior of the pile tip wes given by
Vijayvergiva [29]. Bumerous methods exist for predicting these curves

for different sofl types. A brief discussion of some of these methods

is given in [30]. Some of these results will be compared to the results
froz the finite element model in Chapter 6.



Many tests on instrumented piles subjected to vertical and/or lateral
loading in the field or laboratory have been performed {31 - 34]. In
March, 1973, a full-scale model representing the end portion of a typical
highvay bridge was constructed and tested in four constructicn stages by
South Dakota State University [1]. During each stage, the test specimen
vas subjected to a series of prodetermined longitudinal movements via
hydraulic Jacks to simulate expansion and contraction caused by tempera-
ture changes. In August, 1979, an operational county road bridge near
Fargo, North Dakota was instrumented and monitored for temperasturce
induced stresses by Morth Dakota State University [35]. This study vas
being conducted by J. Jorgenson, Chairman of the Civil Engineering Depart-
ment, and is sponsored by the State Highway Department. During one year
of cbservation, monthly readings vere taken on the length of the bridge,
the gap between backfill and backside of the abutment, etc.

3.2. MWaterial ldealization

3.2.1. General

The soil characteristics in the soil-pile problem can be described
by three types of soil resistance-displacement models as showm in Fig. 3:
lateral resistance-displacement (p-y) curves; longitudinal load-slip
(£-z) curves; and pile tip load-settlement (q-z) curves. The p-y curves
represent the relationship between the latersl soil pressure against the
pile (force per unit length of pile) and the corresponding lateral pile
displacement. The f-z curves describe the relationship between skin
friction (force per unit length of pile) and the relative vertical

displacement between the pile and the soil. The g-z curves describe the



relationship between the bearing stress at the pile tip and the pile tip
settlement. The total pile tip force is q times the effective pile tip
area. All three types of curves assume the soil btehavior to be nonlinear

and can be developed from basic soil parameters.

3.2.2. Modified Ramberg-Osgood model

The modified Ramberg-Osgood model [36], as showm in Eq. (3.1) in
the form of a p-y curve, vill be used to approximate the p~y, f-z, and
q-2 soil resistance-displacement curves and the material behavior of

the pile (e.g., stress-strain relaticns).

kY

p‘(1+|_z| n)llﬂ (3-1)
y\l

P
v, " ;ﬁ’ (3.2)

in which

kb = initial lateral stiffness
p = generalized soil resistance
p“ = ultimate lateral soil resistance
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n = gshape parameter (gsee Pig. 5)

¥y = generalized displacement
This model is found to be better than the procedures in vhich the tangent
modulus is computed as the chord slope between tvo data points on a
curve and the use of functions such as hyperbola, parabola, and splines;
in fact, the model proposed herein includes hyperbola as a special case
(36]. Nonlinear behavior models for symmetrical or periodic loadings
have been presented by a number of vorkers {37-41]. The constants needed
in Eq. (3.1) can be determined from equations prescnted in the following
gections. Fig. 4 shovs the modified Ramberg-Osgood curve for a typical
P~y curve. Similar equations for a typical f-z curve (using f nax® the
maxiomum shear stress developed between the pile and soil, and kv. the
initial vertical stiffness) or a typical q-z curve (using Qugy® the maxi-
pum bearing stress at the pile tip, and kq. the initial point stiffmess)
will be used. Pig. S shows the effect of the shape parameter n on the
gsoil resistance-displacement behavior.

3.2.3. Cyclic model

Because of annual temperature changes, a bridge superstructure
undergoes expansion and contraction, winich in turn causes the piles in
integral abutment bridges to move back and forth. A modified Ramberg-

Osgood cyclic model for both symmetrical and irregular cylic loedings
is proposed
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and also

the soil resistance at the proevious reversal.

¥ o = the soil displacement at the previocus reversal.
The expression for the tangent modulus is cbtained by differentiating
Eq. (3.3) with respect to displacement y
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Fig. 6 illustrates a typical example of this modified Ramberg-Osgood

cyclic model. In this figure, hysteresis loops that model the actual
behavior of the pile and soil can be readily constructed by adopting
rules presented by Pyke [41]. These rules are stated as: 1) The tan~
gent modulus on each loading reversal assumes a value equal to the
initisl tangent modulus for the initial loading curves, and 2) the shape
of the unloading or reloading curves is the same as that of the initial
loading curve, except that the scale is enlarged by a factor of ¢. This
is indicated in Eq. (3.4) in vhich the first term is negative for unload-
ing and positive for reloading; the maximum and minimum values of the
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stress or soil resistance are bounded by the ultimate (reference) stress
or soil resistance.

As part of the finite element model to be presented in Chapter i,
the Ramberg-Osgood cyclic model will be required to track through several
loading and unloading cycles. The determination of reversal values for
loading and unloading of each load increment is cbtained by adopting the
flow chart in Tadble 2 (also illustrated in Fig. 7).

3.3. BSoil Behavior

3.3.1. Analytical approximations by others
As mentioned before, the soil characteristics in the soil-pile problem

can be described by three types of soil resistance-displacement curves; p-y
curvesy f=2 curves; and q-z curves. Numerocus methods exist for estimating
the parameters for analytical approximations to these curves for different
types of soils. A brief discussion on some of these methods follows.

3.3.1.1. lateral resistance-displacement (p-v) curve Several
investigators [20 - 22, 23] have attempted to correlate a lateral load-

deflection response with laboratory soil tests. The p-y curves for clay
and sand used in the study (Table 3) are beliecved to represent the cur~
rent state of the art.

3.3.1.2. Load-slip (f-z) curve Several methods have been pro-

posed for estimating the load-slip behavior of a single pile. The cri-
teria used in this study are those surmarized by Ha and 0'Beill [L2] and
are believed to present the current state of the art. The analytical

forms of f-z curves and their parameters for clay and sand are given in
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Table 4. The factor a in Fig. 8 is used to cbtain the soil/pile
adhesion, given the soil cohesiocn. Varicus curves have been presented

in the literature for this value [13].

+3.1.3. Load-gettlement g-z curves A curve describing the
load-gettlement behavior of the tip for a single pile is proposed by
Vijayvergiya [29]. The analytical forms of gez curves and their poram-
eters for clay and sand used in this study are given in Table 5.

3.3.2. Parameters for the modified Ramberg-Osgood equation

A correspondence can be made between the analytical forms of others
for the p-y, f-z and q-z curves vhich are presented aboﬁc and a get of the
modified Ramberg-0sgocd models. The parameters k and n in Eq. (3.1) can
be determined by selecting tvo significant points from the analytical forms
of the p-y curves for clsy. For example, to simulate the best approxi-
mation of the analytical p-y curve for soft clay, these tvo significant
points can be selected as: (1) p = 0.5 P, 8L Y = Vggi (2) p = 0.95 P,
aty = 8"50' Knowing these two significant points, the parameters k.
and n can be obtained by solving the nonlinear equation. A trial and
error method wvas expedient. The values kh and n of the modified Ramberg-
Osgood models for clay are listed in Table 6. The parameters for the f-z
and q-z Ramberg-Osgood curves were obtained in the same manner and are also
1isted. The parameters for the p-y curve tor_ sand were obtained by a
visual "best-fit" of the hypervolic tangent. Considering the level of

approximation involved in fitting these analytical approximations to
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the real soil data, it was decided to round off the k and n values to
thorn listed in Table 6.

Analytical forms by others for the p-y, f-z and q-z curves and the
modified Ramberg-Osgood equations used in this study are presented in
Fig. 9 for clay and sand. Two features of the analytical forms vhich
cannot be fit by the Ramberg-Osgood equations are: (1) the infinite
slope at origin and (2) the zero slope at the ultimate lcad. The Ram-
berg-0sgood equation has a finite slope, k, at the origin and asymptot-
ically approaches the ultimate load at a rate dependent upon the shape
factor n. The Ramberg-Osgocd equation appears physically more realistic.

3.3.3. cal Iowa soil

Soil properties should be investigated first by test boring at the
bridge site, by measuring penetration resistance and by laboratory testing
on intact samples. If a complete investigation of the soil properties is
not feasible, empirical relationships may be useful. The empirical data,
vhich is obtained from numerous test results and long-term observations,
can be expected to provide reasonable and conservative values.

In consultation with engineers from the Iova Department of Trans-
portation, six typical Iowa soils were selected based on the blow count
i, angle of friction ¢, and cohesion LA Soil properties and the modified
Ramberg~0sgood curves parameters for six typical Iowa soils were generated
by followingz the criteria listed in Tables 3 to 5. They are listed in

Tables 7 to 8 for clay and sand, respectively.
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L. THREE-DIMENSIONAL FINITE ELEMENT PILE MODEL

k.1, Introduction

A state-of-the-art mathematical model that can be used to help evalu-
ate the safety of piles in skewed bridges with integral abutments is
described herein. Normally, for a skeved dbridge with integral abutments
subjected to a change in temperature, thermal movements caused by temper-
ature changes in most cases include biaxial behavior in the pile. Thus,

a three-dimensiocnal behavior of soil-pile interaction is to be considered
for all components of the system, with compatibility and equilibrium
enforced throughout.

The mathematical model developed in this study was limited to defining
the behavior of soil-pile interaction. A combination of a cne-dimensiocnal
idealization for the piles (beam column) and an equivalent spring ideali-
zation for the soil, which includes vertical springs, lateral springs, and
a point spring, are shown in Fig. 10.

4,2. Three-dimensional Beam Finite Flement

Basically, two different approaches have been pursued in incremental,
nonlinear finite element analysis. In the first, static and kinematic
variables are referred to Eulerian (convected) coordinates in each lcad
step. This procedure is generally called the BEulerisn, convected, or
moving coordinate form:lation. In this apprecach, the geometry of the
continua is updated, and the deformations are assumed to be infinitesimal;
hence, the linear relations can be used. The incremental governing equa~-
tions are obtained by applying the principle of virtual work or other
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equivalent theorems to the continuum using its current configuration and
stress [43].

In the second approach, vhich is generally called the Lagrangian,
stationary Lagrangian, or total Lagrangian formulation, all static and
kinematic variables are referred to the original configuration (Fig. 11).
The advantage of the total Lagrangian formulation is the ease with which
it handles the boundary conditions and nonhomogeneities. For large dis-
placement problems, the construction of shape functions for flexural
prodlems is quite difficult and complex if the convergence conditions of
the finite element method are to be met [L3]. As the rotations become
large, a component originally along the coordinate axis of the beam is no
longer along that axis. Therefore, the assumed shape functions in the
axial (linear) and transverse (cubic) directions are not compatible. This
effect restricts the rotations to moderate values.

An updated Lagrangian formulation, vhich reduces the efforts in compu-
tation for problems where the nonlincarities arise from material nonlinear-
ity and finite displacement and rotation, is presented here [43]. In the
updated Lagrangisn formulation, the coordinates rotate and translate with
the body but do not deform with it (Fig. 11). In static analysis, time
is used to represent a loading parameter and not real time. Hence, t+4t
refers to conditions after a load increment AF has been added. If the
strains are small, this formulation linearizes the strain-displacement
relations in terms of the displacements relative to the element moving
chord. Strictly speaking, the updated Lagrangian formulation is a mixed
procedure of the Bulerian and total Lagrangian formulations.
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Derivations of the beam-column element with geometrically and
materially nonlinear stiffness equations have been presented by several
investigators [Uh-62]. A condensed description of this approach is given
here to clarify the notation and approach used in the study. The follow-
ing assumptions have been used in this derivation:

* The beam elements are assumed to be initially straight.

* Plane sections remain plane after deformation.

* The cross section of the beam is constant and has at least

cne plane of symmetry.

* Shear deformation is not considered.

* The effect of torsicnal deformation on normal strain is

negligivle (unrestrained varping).

* The beam~column can undergo lavge rotations, but the deformation

within cach element from the chord is restricted to be small.

h.2.1. Coordinate tystems

In order to describe the system, three types of coordinate systems
vill be defined here:

1) A fixed, global set of coordinates (X, Y, Z).

2) HWodal coordinates (X, ¥, z)--e set of nodal coordinates associat-
ed vith each node that cotncides with D), B,, and by (the
orthogonal base vectors), respectively, for eg.ch node. The
initial orientations of the vectors '1;1 are chosen to coincide
with the principal directions of the cross section, and since
the vectors rotate with the node, they remain aligned with the

principal directions.
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3) Element or local coordinates (%, ¥, z)--a set of element
coordinates associated with each element. The element
coordinates rotate and translate with the end points of the
elezent. The x, ¥, and z axes are -glociatcd wvith the ortho=-
gonal dase unit vectors :1, :2, and :3, respectively, for
each element. These are the ﬁpdatcd Lagrangian ccordinates
described in the introduction to this chapter and illustrated
in Pig. 11.

These coordinate systems are illustrated in Fig. 12. The unit vec-

tors '1;1 and :1 define the rotationsl transformation for any vector compo=

nents between the coordinate systems.

h,2.2. Strain-displacement relaticnship

In the updated Lagrangian formulation, consider a generic beam-coluzn
element with Node I and J (or 1 and 2) at the endpoints. The clement
has six degree of freedoms per node; three displacements and three rote-
tions. The nodal displacement vectors in gloval and element coordinates
are designated as Dl to D:.a and dl to “12' respectively. The positive
directions are given by the righthand rule. The e¢lement coordinate sys-
tem (x, ¥y, z) for the beam~column element is defined so that the x axis
is updated to remain coincident with a line Joining the endpoints of the
element, vhile the y and z axes can be defined by a third node which
lies in the positive x~y plane (K node). In general, the third node
translates as the average of the two end nodes. In addition, it rotates
about the local axis of the beam (x axis) an amount equal to the average
of the twisting rotations at the ends [63].
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Consistent with the updated Lagrangian approach, the element coordi-
nate system is temporarily visualized as remaining stationary at xt, yt,

:t (Pig. 11) as the beam moves during At. The neutral axis displacements

relative to xt, yt, st are given by cubic shape functions to descride

bending deformations and linear shape functions to specifiy axial and
torsional deformations as
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. - dz

E o o o 0 o - :s

0 %%2A 0 o0 0 2Y-ENEY) g:

[ 1

o o  3g28 o 2¥ge?) 0 ‘:7

o o o £ 0 0 as

- dro

an

}dn ]

= (m] {a) (4.2)

vhere
£= f; (%.2)

Lt = the length of the element at time ¢,

The u na’ Yoa® Yoa and ’n& are neutral axis displacementz which fncTale

rigid vody motion, measured relatively to the current stationary
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element coordinate system as shown in Fig. 11 (e.e., the moving chord

vhich connects the endpoints).

Following the usual Buler-Bernculli beam assumptions that normals
to the midline remain straight and normal, the deformation displacement
at each point of the beam element may be written aa

v v
AL . 0.2
VeV, - "m (b.h)
vew, * ¥ (L.5)

From the previcus assumptions, the effect of torsional deformation on
normal strain is neglected and shear deformation is not considered. The
relationship between the beam normal strains and the displacements is

(B) - 3(2Y (h.6)

The equation is valid as long as (avlax)a and (au/ax)"’ are large compared
to (3u/ax)2, Although this condition is similar in appearsnce to that of

du
g:ax-b

e
N

moderate rotation theories, it is far less restrictive because v end w
are the displacements relative to the updated element coordinate x. By
reducing the size of the element, v and w can be made as small as neces-
sary (6h].

From Eqs. (4.1) to (4.6), the strain and displacement can be related
as

e = ([8,] + 3 (B 1al (5.7
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wvhere
(3] = t=-1- fl (126-6), =2 (126-6), 0, p(6E-b), -n (€€} |
3 :
;%. ;2 uze-s).;% (126-6), 0, p(66-2), -n (6£-2)]  (1.8)
(83 = {a}(10,)%(a,) + [0 1[0, D) (4.9)

(] = to, dlll(:): 0,0, 0, ), o, —-lq"g)’ 0, -0, 0, ?2(5)]
z lt ,‘t
(4.10)

lcy] b [0. oo "%?’(;). -N, -Vx(ﬁ). o, og 0, :%-‘P;(E). N, "?2(‘): 0]
2 )

(5.11)
2(8) = 14+ 362 (4.12)
¥i(E) = <28 + 32 (4.13)
¥s(f) = -6 + 62 (b.1k)
n (k.15)

p ===
lt * R.t

For general nonlinear problems, the solution algorithm (Newton-Raphson
method) is based upon the application of a small load increment. For
this technique, it is necessary to relate the rate of change of force
with displacement, that is, the tangent stiffness. From Eq. (L.7) that
rate of strain Ag can be found as [60]

b = ([B.] + [B,]) {aq} (4.16)
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or
te = (B) {aa) (b.17)

Once the strains are known, the stresses are computed by the con-
stitutive lavs [65]. The nonlinear stress-strain relationship of the team
material will be approximated by the modified Ramberg-0sgood cyclic model
(see Sec. 3.2.3). The incremental stress-strain relationship of the beam-

column element is expressed as
8o = E, le (4.18)

vhere xl‘ is the tangent modulus of elasticity of the stress-strain curve.
If the thermal strains are considered, Bq. (4.18) is modified to

A= B'r(“ -Ac!) (4.19)
ey, = 0AT (4.20)
in wvhich

AT = temperature above an arbitrary reference temperature

a = coefficient of thermal expansion

k.2.3. Tengent stiffness matrix in element coordinate system
The theorem of virtual work will be used to obtain the equation of

equilibrium. The nodal forces are found as

(s} = 1, (81" oav (k.20)
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vhere V is the volume of the element. In the updated Lagrangian formula~
tion, the incremental form of Eq. (4.21) will be used to obtain the tangent
stiffness matrix of the beam-column element in the element ccordinate system.
The incremental form of Eq. (h.21) is

(ar) = s, (88)70av + £,[B) 0cav (4.22)

The following definitions are introduced

1181 008V = ([ig] + [ig]) {2) (b.23)

s JaB)Toav = i) {aa) (h.2k)
vhere

[g) = S8, 1B, (B, ) av (b.25)

i) = S {08,V B (B ) + (B, 175,08, )

+ (B V7B (B v (4.26)
and on can show, with some manipulations, that

(281" = ((c,1%c,] + (6, 1(c,]) (sa} (k.27)

The matrix [kol is the conventional stiffness matrix; [kcl is the
initial stress matrix (or the geometric stiffness matrix), which depend
linearly on the nodal displacements {d}; and [kL] represents the large
displacement stiffness matrix, vhich depends on quadratic terms of

the nodal displacements {d}. The updated Lagrangian strain approach
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makes the strains and rotations in the element system small encugh
(for reasonably small element sizes and small lcad steps, At) that [kL]
can be cmitted [60]. Eq. (4.22) can then be reduced to

{ar) = ([kol + [kol){Ad]
= (le(Ad) (4.28)

The folloving definitions are made in order to obtain the expressions
for (k,) and [k,):

P - ]; oaA (4.29)
A j ozdA (4.30)
A

& - OyéA (3.31)
=, .
"1'%.? L oly® + z2)aA (b.32)
(EA)y, = & 27 (4.33)
). = (b.34)
(B )y L‘r‘“
), = yaa (h.35)
(B )y LB-E'

(z2%)yy = [ Byz2ah (4.36)



(zxh)yy = [ B yoan (4.37)
(er¥®),, -j; By (4.38)

vhere 1 = I and J denctes § = 0 and 1, respectively, and A refers to the
team cross-ssctional area. The integrals in Eqs. (4.29) to (4.38) must
be evaluated numerically since the cross section may be partially plastic.
Numerical methods are introduced to calculate the current strains and
stresses (vhich are functions of n and p) at different points of the
cross section. In Egs. (4.29) to (4.38), 0 is the current stress corres-
pond to the current strain ¢ (Eq. 3.3) and By is the tangent modules of
elasticity of the stress-strain curve correspond to the current strain €
(2q. 3.5). The cross-sectional area is correspondingly divided into a
number of subelements over the depth and width as shown in Fig. 13. The
number of layers used in two directions must be sufficient to descrive
the variation of material properties and stresses over the depth and width.
Each subelement is assumed to have uniform material properties, and the
strain is cvaluated at the centroid of the subelement. The strees is
assumed constant and equal to the stress calculated at the centroid of
the subelement. The quantities obtained from Bq. (%.29) to Bq. (4.38)
are assumed to vary linearly between I and J; for example,

P(E) = (eJ - 91)5 + Py (k.39)

wi(E) = (u} - u}'); + u‘I' (5.50)



ME(E) = (M} - MD)E + 1]

M(E) = (Mg = MDE + W,

(k.b1)

(4.042)

The conventional zatrix stiffness is cbtained by evaluating the

integral [See Eq. (4.25)]. Using the definition of Eqs. (4.33) to (L.38)

gives the explicit form of lkol as

(ko) =

_k‘O _k‘O
N
ke ke
o 0

x0 -0
k'  ks®
luo

k¢ Kk»

Ky K

-kno kno

-kao kz?
ke =Kk2?
Iu? -kn?

kuo -iuzo

kz!? -kz?

k»

(4.43)
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kD= = (") + 3y

o 1
k" ';t' ((n')n + 3(81')TJ) (4.bh)

The linear term (('M'),r/!'.'c has teen inserted into Eq. (4.h43) even
though it does not result from axial (normal) strain. It should be
noted that for a conventional stiffness matrix this term is used to
resist the applied torsiom.

The geometric (initial stress) stiffness matrix lkcl is obtained by
evaluating the integral of Eq. (4.2h) with the definition in Eqs. (4.29)
to (.32) and (k4.35) to (b.42). The explicit form of [k;] is
[xg] = 2/2°

0 o ©0 o o0 o0 0 ©0 0 ©0 0 0°
K 0 «k® 0 kP o0 k% 0 k¥ o k!
0® k% k® 0 0 0 -&® xd k® 0
kS W% ke 0 k® k¥ k€ k¥ ke’
kW@ 0 0 0 k® a0 kS o
e 0 <k 0 k& 0 ki
o o o0 o0 o0 0
K 0 x® 0 -k’
s ktG -ksc luG 0
ke® k¥ —ke®
kuG 0
I |

(4.45)
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kO = %;- (6p,) k" - %; (6p,)

AR Ty k=G e uy)

*0 = % m® - ) k0= % (Y - nY)

e 8 L0 (ep 42 AL TULY PP

k- L’g;ﬁ (2 + 6P,) (4.46)

h.2.k., Three-dimensional transformatiocn matrix and ccordinate updating
Consider the motion of a beam-column element in a fixed Cartesian

coordinate system (global system) as shown in Fig. 14. In Eq. (4.28),
the incremental equilibrium equations of a beam~-column element are
derived by first evaluating the finite element matrices corresponding

to the element coordinate system (see Fig. 14). The resulting matrices
can next be transformed to the global Cartesian coordinate axes prior

to the clement assemblage process [43]. The transformation matrix [T ],
vhich relates displacements measured in the element system at the current
configuration (at time t) to the displacements measured in the global
coordinate system, is obtained by a vector transformation between the
element and global coordinate system. The direction cosines for the

element unit vectors ‘é‘; are
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X
:;-P‘“-z;fn;}nﬁ (b.47)
IJ
T o
>t J K t>
.3.%3*;{ uz§f+usa+n$ (4.48)
:’;.:;x:’;-z;‘fmgﬁm‘zi (.49)

vhere 'f, 3, 'IE are unit vectors in the global coordinate system snd

‘i:J - i: - ‘; Y “co (l‘osO)

Incremental nodal displacements in the element and global coordinates
are related by an orthogonal transformation

{aa} = [T] {aD) (5.51)

vhere

(r) = (r

(L.52)

['!ml s[ 8% mt nt

L,t’ n;t nat (h.53)
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The tangent stiffness of the beam-column element in the global co-

ordinate gystem is

(ar) = [K;) (a0} (b.54)
vhere
Ky = (717 [k, (7] (b.55)
As mentioned before, the unit vectars o7, by,, and B3, (1 =1, 3)

must be updated to ':;"M', 3;;“, {;‘;At' after each incremental load in

order to track the element and nodal coordinate systems. For the pur-
pose of tracking the unit vectors ::. 3;1. and 3}1 at the current stage,
start from the initial stage (at time 0) vhen the unit vectors oy, By,
and 331 are the same. After the first incremental load is applied, the
incremental displacements {aD®)} are obtained in the global coordinate

system from the solution of Eq. (4.5:)

y t W
{An,u}
t
(Abm}
(0%} = | . *
{Av,m}
t
| {805} | (k.56)
where

{M;I} = translation at node I in X, Y, and Z directions

{AD;I} = rotation at node I in X, Y, and Z directions
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At the initial stage, the third node K is defined as a point in the

positive x-y plane as showvn in Pig. 1i. At the current stage, nodes I

and J are displaced to the new position -it and 'ft. respectively.

I J

st _ 320
K= XD+ B (4.57)

at _ 30
X = i.r + Aﬁga (4.58)

vhere

-

X, = position vector of node I at time ¢t

-

-.o

4

The third node (K node) translates as the average of the two end nodes.

= position vector of nocde I at time O

In addition, it rotates about the axis of the beam on the aversge of the
tvisting rotations. Since the incremental displacements (8%} are
assumed to be small, the nev position of the K node is obtained as

X = G+ 885, x (T - T (4.59)
vhere
Mg = 80+ 1 (a8, + 3%, (4.60)

is the translation term. The small rotation about the beam axis is

=t 1 /30 LAy L2t |2t
Apele-é-(wer+ww) eI]el (k.61)
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The quantity in parentheses in Eq. (h.59) is the radius vector from the
midpoint M to K, in which

1 /3t 3t
ez (%+%7) (4.62)
Row, for the nodal coordinate system, the unit vectors ﬁgi and §§ g

are also updated since they rotate with the nodes. Prom the assumption
that the incremental rotations hﬁ;ll and {AB; J) are small, the incrementu!

vectors can be obtained by taking the cross product of the tvo vectors,
88%, and v77, and updating

1
>t +0 20
vy; = byg ¢ &BG, x B2, (4.63)
»t 0
vye = by + 4D%, x B3, (4.64)

These current updated vectors must be normalized to obtain the direction
cosines for the current updated unit vectors. For the next increment,

t = 0 refers to the previous increment.

h.2.5. Nodal forces computation

In the updated Lagrangian formulation, the incremental nodal dis-
placements {AD®) which are obtained from the applied incremental load
(Eq. 4.54) are updated to rind the new position. The nodal forces are
then evaluated in this updated element coordinate system (x“*3F, y**8¢,
AL LIP ™ Fig. 11). In the following updating procedure, the superscript
0 refers to the previous step and superscript t refers to the updated
position, i.e., t+At is replaced by t. Once the coordinates have been

updated, the nodal displacements {dt} account for only the displacements
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due to straining. That is, the rigid body motion has already been
included in the coordinate updating (1i.e., &; = a,: . d'; - = o =
d;' = 0). The displacement due to material straining in the axial

direction iz determined by

%)|-| - %)

0 0
“z A 5 [ 2 (%500 * Y3082 * 2%

.
4 = 85

+ (03y)% + (Dgp)% + (ngy)? | (4.65)
vhere
z°, z‘ = the length of the element at time O and t, respectively.
Xgy = X3 = Xg» Dy = D, = Dy, ete.

AIJ = elongation

For the purpose of computing the relative rotations at time t,

t t t t t
ds,ds,dm,du anddm,nodalunitvcctontoruodelandlarc

defined by "‘I‘i. ""1. respectively (i = 1, 3). Element unit vectors

(x, ¥, z) are denoted by :i. Since the nodal vectors ggi bys
rotate with the nodes, the angle betveen ggi and '5;' indicates the mag-

nitude of the deformation at node I. For example, the cross product of

cnd

the two vectors :t and g§1 is a vector perpendicular to the plane which

1
contains these two vectors. The magnitude of this vector is equal to
the sine of the angle between ?’ and 'ﬁt With the assumption of small

1 n’
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deformation within the updated coordinate system, the bending deformation

-’t
rotation ds can be obtained by projecting this vector (:: z 't‘;:l) on the
current y axis. This is illustrated in Pig. 12 and the mathematical

expressions are given below.

gt =) = (fxTh) T (b.66)
4t =0f = (G xT) - T (.67)
AL AYCEL-ARL | (.60
4y = Oy (el x ) - F (.69

vhere

é;, e}, e"J. e} = bending deformation rotation at ends I and J.

The torsional deformation is found by taking the cross product of

;;’2 and %}2 and projecting this vector on the current axis of the bean

(x axis). This yields-

t A AR
dlo = % L4 (blz X bJe) el (5070)
wvhere

e"IJ = torsional deformation rotation

The strain ¢ which is caused by these displacements relative to the

updated element coordinates is now calculated (Eq. k.7). The currenr
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stress ¢ vhich corresponds to the current strain € can be cbtained from
Eq. (3.3). The nodal forces in the updated element coordinate system

(Eq. 4.21) will be evaluated numerically first by performing area inte-
gral in Eqs. (4.29) through (4.33) and assuning they are varied linearly
betveen node I and J [Eqs. (4.39) to 4.h2)], then performing length in-

tegrals to obtain the nodal forces in closed form as

(%) = (a) + {ag) (b.72)
vhere
T
(AL) = [R] {rLl (4.72)
T
{Am) = (R] (rn} (4.73)
<1 0 0 0 0 o0 1 o0 o0 o o o
© 0 0 <1 0 0 0 0 0 1 o0 o
o o =2 2
0 $ 0 0 0 1 o0 i% 0o 0 o0 o
=1 1
o o1 o 0 0 o0 o0 o s o 1 o
6 = o0 o0 o o o =
i et ot ¢ o0 o 12 j(h-‘l!&)

"y
-y
{tL} = .u; {
¥
Wy

(5.75)
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0
(3 M + 3 U)0%; + & (M) - MDY - oF) + () - ,q)(ez_ o%)
5 05 - )6 r(ﬁP *2!')9’#3—(-7 - p,)¢}

{r. ) ={ 2 2t 2®
M ") g5 (4] - Mp) O ¢ g5 (6Pp ¢ 2R)e] + 75 (<Pp - )0} '

z(n’ W ) e}, 3-(1’ -P)6’+3-(2P+6P)07

:1"2}' (5 - Wy )Of; ¢ %o' (<P, - Py) 6] "%6 (2P, + 6P)0}

(4.76) °
The first term on the righthand side of Eq. (4.71) is the linear
approximation to the nodal forces and, hence, is not dependent on the
deformation. The second term introduces the additional contribution as
a result of a deformation. The linear term is given by

GJ
u_ = (».7T7)
13 zt I

vhere G is the shearing modulus, and J is a torsional constant expressed
as a function of the element cross section [62). This linear term uu.
has been added to Bq. (L.75), even though it does not result from normal

axis stress.

The nodal forces and displacements in the global system can be
related to the updated system by

4 = 7t (Y (4.78)
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t
in which {F} are internal forces due to the internal stresses of the

elenent.

k.3. 8oil Spring Finite Element

b.3.1. Soil model Qescription
The basic assumptions employed for the treatment of the three-

dimensional soil model are as follows:

(1) Torsional soil resistance is not considered in the soil-pile
interaction (5].

(2) There is no coupling between the axial and lateral soil resistance.
That is, the deformation modes for an isclated soil spring are
independent of each other. Parker and Reese [66] have reported
that the relationship between axial load and displacements of the
soil is not significantly affected by the presence of lateral
deflections of the soil, and vice versa. 8oil behavior can thus
be divided into axial and lateral parts as described in Section 3.3.

(3) The behavior of the soil at a particular depth is independent of the
soil behavior at another depth [67].

(4) The lateral soil behavior is assumed to be independent in the two
orthogonal lateral directions. That is, the soil resistance in the
y direction is not affected by the soil resistance in the z direc-
tion. Two independent lateral springs will be placed in the y and
z dfrections, respectively.

The soil displacements and forces are calculated on the basis of the

displacements in the element coordinate system as shown in Fig. 15.
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b.3.2. Soil springs
If nonlinear behavior is considered, the soil spring stiffness is

not a constant and instead is a function of displacement. Only the
lateral spring element in the y direction will be discussed here, since
the other s0il spring would follow the same derivations. As discussed
in the previocus section, the soil resistance directly opposes the lateral
displacement in the y direction. The lateral soil resistance per unit
length of t)}g pile p is assumed to be linearly distridbuted along the
pile element (Fig. 15). A set of p-y curves is represented by the
modified Ramberg-Osgocd cyclic model (see Sec. 3.2.3). In this figure,

P» ¥y and kﬁ
elenent y direction. The relationship between incremental soil resis-

(the lateral soil tangent stiffness) are in the updated

tance and displacement can be expressed following Eq. (3.5) as

Apy - wAy (%.79)

The quantities Ay, k ., and py are assumed to be linear functioms of &,

Ad
by =[1-8, ¢ lM:l = (1 1(aa) (4.80)
Kee1
x, =[1-£,§8 (V) (5.81)
ye k
vtd
s(1-££ {5 (4.82)
Py > P .

yJ
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By the principle of virtual work

(ar) = [x 1 80) (.83)

vhere

2
‘tn 1T
[k, Jp = L (81 7k (B e (k.8k)

The explicit form of soil lateral tangent stiffness for y motions is

1/ kyu +1/12 kﬁa 1/12 kyu + 112 kyw
t ,
l%%-z .
sym 1/121:”1*1/ km

(4.85)

The total nodal forces {f) can be obtained by using the principle
of virtual vork as

4 T
{r] = . (n.) p, & (4.86)

or, explicitly, since degree-of-freedom 2 and 8 are for the y displace-
ments of the beam element,

fa 1/3 Py +1/6 Py
=£t
fg 1/6 Py * 1/3 Py (4.87)

The tangent stiffness of the nonlinear springs for the other cases
(1ateral z spring, vertical spring, and point spring) can be obtained
in a similar manner (see FPig. 10). The matrix [1531,r represents the



55

tangent stiffness for the soil model, wvhich is added to the beam stiff-
ness [k]'l' to form the tangent stiffness of the soil-pile interaction
model.

4.3.3. Backvall soil model
Pigure 16 shows the backvall soil model which is considered in

integral bridge abutments. Longitudinal bdridge movements may cause
parts of the backvall to come into contact with or separate from the
soil. In the idealized backwall soil model, it can be assumed that
the backwvell soil is attached to the backvall, so that the soil spring
properties of the backwall soil can be treated the same as the soil
springs attached to the pile.

4.h. Tvo-Dimensional Version

h.h.1. SBpecialization from the three-dimensional model

The general features of the two-dimensiocnal are similar to the
three-dimensional version, except the out of plane displacements are
zero (D3 =D = l)5 = D9 =D,n=Dpy = 0), that is, three degrees of
freedoms per node in the X-Y plane. The tangent stiffness matrices,
[kol and [kG]. transformation matrix [T], and the displacements due to

straining have much simpler forms than the three-dimensional version (s].
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5. BASIC NONLINEAR SOLUTION TECHNIQUES

In the previocus chapter, the finite element model which is uged to
predict the nonlinear behavicr of soll-pile interaction has been described.
The general incremental tangent stiffness equations for the bveam~column
and soil spring elements are the major results. In this section, these
equations become the basis from which a general incremental nonlinear
solution procedure is formulated.

5.1. The Incremental Load Technique

The conditions of equilibrium for a given structure are satisfied
by solving the structural stiffness equations for the unknown general-
ized (glotal) displacements given s known applied loading. In a linear
analysis environment, this solution procedure is straightforvard becwise
all of the stiffness parameters are constant, that is, independent of
displacement and expressed in closed form. This is not the case in a
nonlinear analysis environment where the stiffness parameters are them-
selves dependent on the state of total displacement, total stress, and
material properties, and may not te conveniently expressed in closed
form. In this case, the most suitable apprcach to aralysis is to apply
the total load in & series of small finite-sized increments. For each
load increment, the resulting increment of displacement is determined from
the incrementsl stiffness equations where the stiffness parameters are
evaluated to reflect the instantaneous state of the total displacement,
total stress, and material characteristics that exist just prior to the
application of the load increment. The total displacement after the
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load increment has been applied is evaluated by adding the computed
displacement increment to the total displacement that exists prior to
the application of the load increment.

This type of solution is a piecewise linear solution, a physical
representation of vhich is illustrated in Fig. 17. This figure shovs
three lcad-displacement (P - 4) curves for a single degree-of-freedom
systen. Curve A represents the linear behavior vhich would result by
solving the governing stiffness equation for the total lcad applied
in one increment; curve B is the piecewise linear solution vhich would
rosult by applying the total load in several increments; and curve C
represents the exact nonlinear behavior. It is clear that as the size
of the load increment approaches zero (or the number of lcad increments
approaches infinity), the piecevise linear curve approaches the true
curve. 8ince load increments of infinitesimal order are impossible to
achieve, a reasonable number of moderately sized load increments will
be applied.

5.2. Hewton-Raphson Iteration Method

As indicated in Fig. 17, it is desirable for the structural solution
procedure to come as close to curve C vwith as few load increments as
possible to cbtain the desired analytical accuracy. This can be achieved
by employing the Hewton-Raphson method to satisfy equilibrium iteratively.

This approach is characteristic of the tangent stiffness technique
where, in a given load increment, the Hewton-Raphson iteration method

is applied so that the element nodal displacements are successively
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corrected until joint equilibrium is satisfied. These displacement
corrections are computed using element tangent stiffness matrices,
vhich are successively camputed to reflect the most current state of
total displacement, total stress, and material properties.
The basic characteristics of this technique are illustrated in
Fig. 18 for a single degree-of-freedom system vhich is characterized
by the folloving parameters:
¢ = element stress
f = element force
F = applied external load
4 = ¢lement displacement (in this case for a single degree-of-
freedom, this is the same as the global displacement D)
E,r = ¢lement material property parameter--the instantaneous
slope of the element stress-strain relationship '
Ky = ky(d, 0, B) the tangent stiffness—a function of total
element displacement 4, total element stress ¢, and the
state of the element material property parameter 2,2.
At a particular level of applied load, given by F,, the total

J

element stress is given by GJ, the total element force is given by .,

the total element displacement is given by 4 52 and the current tangent

stiffness is given by k'l‘ . This state, which is indicated by point 1

on Pig. 18, is reached after the application of several load increments.
At this level of applied load ?J’ the description of the HNewton-

Raphson iteration begins with the epplication of an increment of external

load AF. To satisfy equilibrium, the following relationship must be true:
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rJ + (&1.3) Ad = ’3 + AF (5.1)

Equation (S.1) is a representaticn of the linearized incremental
analysis vherein the structure is assumed to behave linearly mmng
the application of an incremental lcad AF. Equation (5.1) also estab-
lishes the analysis at point 2 of Fig. 18. This increment of displace-
ment MJ, vhich results from the application of AP, is computed by

rearranging Eq. (5.1) and solving for M;' as follovws:

"’rJ (? +4F - r ) (5.2)

The increment of displacement is added to the previous total displace-
ment 4, to form the nev total displacement

J

1 =

a =+ Ad} (5.3)
vhere

6} = the new total displacement

Note that the subscript denotes the load increment number and the
superscript denotes the iteration number within this load step.

The analysis is still at point 2 on Fig. 18, where a new material

property parameter %‘1 and a nev state of element stress o} are computed

in order to reflect the new displacement d]'. Since the element sntfness

J
k,r is dependent on 0, 4, and E'L" it is recomputed to reflect 63' 3, and

B,];, 5 as follows:
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k'}'a = ¥p ("3' 4 %4) | (5.5)

The stiffness parameter l:,]i',J is the tangent stiffness at point 3 on the
actual load-displacement curve of Fig. 18.

The internal force due to the new displacement aﬁ and the new state
of element stress o} is computed in the folloving manner:
1 .1
£ d .
f} = f(o It J) (5.5)
vhere

!’3’ = the new total internal force

Equation (5.5) establishes the analysis at point 3 of Fig. 18. At this
point, equilibrium is satisfied if and cnly if the following relation-
ship is true:

PJ-&AF-t}-O (5.6)

However, because of nonlinear behavior, it is clear that equilibrium

at point 3 is not satisifed exactly by Eq. (5.6) because Ad} and a}'

vere computed on the basis of the previous tangent stiffness k,,, vhile

T,

r"" was computed on the basis of the new state of o‘:'" ard d}. This es~

tablished the need for a solution technique like the Newton-Baphson
method, which attempts to modify t}' in such a way as to satisfy the

equilibrium equation [Bq. (5.6)] at the new applied load level P + AP,

J
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Since Eq. (5.6) is not satisfied, it is more suitabdbly expressed in
the following form:

OF; = P, 4 P - £ (5.7)

vhere AP}' is called the residual or unbalanced force, vhich results from
the changing stiffness. The Newton-Raphson method thus attempts to find
. an equilibrium solution for an increment of external load AF, by forcing
the residual AP}' to be as close to zero as possible through a series of
iterations.

The next step in the iteration method is to attain a nev equilib-

riun solution by assuming that the residual is applied as an external
load

Mf-(x}J)'l(rJ+Ar-r’J') (5.8)
) ("ia) - (”:)

vhere Ad§ represents a nev displacement increment, wvhich is a displace-

ment correction to ﬁ}. in order to adjust equilibrium to compensate for
2

the residual. The analysis is now at point b of Fig. 18. This AdJ is
added to d}' and a newv total displacement d? is obtained. Vollowing the

same procedures, one computes og. %J’ “gy and t§ If this iteration
is convergent, then this new residual is smaller than the previous
residual and the true equilibrium solution is approached. Solution of
the displacement for the next load increment can proceed by the same

processes as before.
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5.3. Convergence Criteria

If the equilidbrium is ultimately satisfied for a particular locad
increment, this method must result in a geries of residuals which tend
tovard zero. It will be assumed that the iteration converges and equilib-
riun is satisfied when the most recently computed displacement increment
and/or residusl is less than or equal to scme user-prescrived tolerance

(59]. The convergence criterion used herein for a single degree-of-

freecdom is
s=r! £ tolerance (5.9)
4
J
vhere Ad;'ﬂ' i8 the most recently computed displecement increment and
d} is the current state of total displacement just before Myl is added

to form a nev total displacement. If Eq. (5.9) is satisfied, then the
convergence is indicated, equilibrium is sufficiently satisfied, the
iteration stops, and the analysis proceeds to the next increment of
applicd load. This stage of the analysis is indicated by point 6 of
Fig. 18.

In the event that convergence is not satisflied, it may be that
the displacement increments are diverging, which indicates that the
iteration process cannot find an equilibrium solution for the given
increment of applied load. Divergence can be caused by & numerical
instability because of the stiffness changing too rapidly within the load
increment. In the event of such behavior, a smaller load increment may

produce more stable behavior.
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On the other hand, if the load increment is already reasonably small,
divergence may signify that the structural stiffness is tending tovard
zero, vhich indicates instability of the structure. In any case, if
divergence is detected, the Newton-Raphson process and the total analysis
are terminated.

The Newton-Raphson process and the total analysis are terminated on
the basis of one additonal mechanism. It is a safety mechanism and is
employed in order to prevent excessive iterations. Thus, the iterative
process is terminated and the total analysis is terminated if the
number of iterations excecd a user-specified maximmm,

5.5, The Complete Solution Procedure in Detail

The basic properties of load incrementation and Newton-Raphson
iteration describved in the previous sections are combined to form the
basis of the total nonlinear solution procedure. In this nonlinear
solution procedure, the most current information available concerning
the structure is used to calculate the incremental quantities at any
step. In other words, the tangent stiffness matrix at the start of
cach iteration is used to estimate the next incremental quantities.

It requires the formation of the element tangent stiffness transformed
into global coordinates at the start of each iteration.

Suppose that current (<3}, {03}, (P}, (), 1), UET), (£,
{?il» “‘:} ’ {b;'}. {ei}. {D;'}. {dil, {A;"J}, and {ANL? are given at the
jth increment and the ith iteration. The condition f =l and § =1 is
the initial stage in the nonlinear problem. Thus, except for {Xi} N
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'bi.

ation by the updated Lagrangian method, the following steps will bde

and ei » the above vectors are null. To generate the 1 + 1 iter-

followed:
Step 1: Calculate the current unbalanced forces in the global

system

ery™) = tr, 0] - (7)) (5.10)

vhere
{’4 ﬂl = forces for j + 1 load increment
{?;'} = forces from previcus iteration i

Step 2: Establish the current element cocordinates (x}l for the
element at hand by formilating the transfornation metrix [Ty] from the
current global coordinates {x7,) , (X7}, and (x;"l.

Btep 3: Generate the structural tangent stiffness in current
coordinates {le

(a) Establish E, 8t each integration point through the cross

section (vith current strain deformation); that is, Eq. (3.5)
is used to calculate B,r for static and cyclic loading.
(b) Perforn (BA)y, (BK),, (BC),, (BT),, (21%),, end (ET'®),
integrals at each end from Egs. (4.33) to (4.38).

(c) Determine [ngl [from Eq. (k.%3)]; also with current
(2}, (4}, 08"}, ana 55') [from Bgs. (5.29 to (4.32)]
find [ig,] from Eq. (4.45).
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(d) Generate [ki],r by adding [k:J]T [ frem Eq. (4.85)].
(e) Transform (ki],r into global coordinates through the trans-
formation matrix ['l‘j] (Eq. 4.52) to get [xj],r (Eq. 4.55).

(f) Assemble [Kj].r into the structural tangent stiffness

1
4 “‘4]'3'

Step k: Solve for the incremental displacements with the current

unbalanced forces

{Anj*l}'- (z le.r <1 {Ar}ﬂl (5.11)

Step 5: Update ccordinates and forumlate [Tjﬂl
(a) Update coordinates for node I, J, and K from Eqs. (4.57) to

(4.58).

(b) .Update displacenents, (D;*) = (D3} + (a0y*).

(c) Update nodal unit vectors {bzﬂ'l from Eqs. (4.63) to
(h.6h).

(d) PFrom the updated coordinates in (a), £ind the unit vectors
(e}'ﬂ'} in element coordinate system from Egs. (4.4T) to

(4.49) to formulate [‘l'r'll.

Step 6: Calculate updated strains and stresses

(a) Use the unit vectors {biﬂ} . (bﬁﬂl , and {e3*) to rina

J
{a§*1} from Eqs. (4.65) to (4.70).
(b) cme {e?’l} from Bq,o (2"1)0

(c) Compute {oiﬂ'} from Bq. (3.3).
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Step 7: Compute element nodal forces in the element system

(a) Perform numerical integration frem Eqs. (4.29) to (b.32)
and use Bqs. (4.72) and (4.73) to find {AL?”') ana {ad*),

(b) Compute {rj"l} from Eq. (L.71).

Step 8: Find the equilibrium external nodal forces in glcbal

coordinates
A BRI ity B (5.12)

Step 9: Test for convergence. If not satisfied; return to Step 1.
Otherwvise, store these stresses and strains and go to the next increment
lcad {FJ *2}. Each step of this algorithm is tangent to the lcad-versus-
displacement curve, as suggested before. The process is interpreted
graphically in Fig. 19.

5.5 Guidelines for Program Usage

The basic philosophy of the finite clement method is to analyze
a plecevise approximation to the structure. Specifically, the structure
or body is divided into finite elements; simple functions, usually poly-
nomials, are assumed to approximate the displacements within each element.
The greater the number of terms included in the approximation, the more
closely the exact solution is represented [65]. For example, in the
beam~colunn element the displacement functions (shape functions) are
assumed to be a linear polynomial in the longitudinal direction and a
cubic polynomial in the transverse direction.
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In the region of high curvature gradients, a finer mesh is necessary

to obtain a satisfactory solution. For a besm on an elastic foundation,
four to eight elements in a one-half wave of the deflected shape will
provide satisfactory results [5]. For elastic problems, the length of

onec-half vave is /8 [68] where

s - —% (5-13)

vhere
ky = the lateral stiffness of the soil
2 = length of the pile

EI = the flexural rigidity of the pile
For inelastic problems, high curvature gradients occur in the region
of a plastic hinge and a finer mesh is required to achieve comparable
accuracy. The experience of the authors indicates that the change in
curvature between elements should be no more than 0.0001 rad./in.

Mesh sizes must be sufficiently fine to model changing soil and
pile properties such as layered soil or tapered piles.

Load step sizes are controlled by the relative amount of nonlinear
behavior. For example, convergence can become a numerical problem in
the plastic region due to the difference between loading and unloading
moduli. This problem can usually be overcome by reducing the load or
displacement increment.

Mesh size and convergence problems are encountered im all types

of finite element analysis. Usually, these problems are solved by
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reducing the mesh (or lcad increment) size until no significant change

occcurs in the structural response.
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6. ANALYTICAL AND EXPERIMENTAL VERIFICATIONS

Baged on the theory outlined in Chapters 4 and 5, two computer
programs, IAB2D and IABID (Integral Abutment Bridge Two- and Three-
Dimensional Finite Element Computer Programs) have been developed to
solve the nonlinear soil-pile intgrtcticn problems for both two- and
three-dinensional cases. A number of examples have been analyzed to
establish their reliability.

6.1. Analytical Verification

6.1.1. Two-dimensional analytical verification
Several numerical exazple problems are solved using the two-

dimensional computer program IAB2D, These prodblems were also sclved
with IAB3D to confirm the validity of the three-dimensional computer
progran. A beam-column problem and a short, thick column problem vere
first used to check geometric and material nonlinearity, respectively.
Additional problems were analyzed, such as: (a) snap-through problem,
(b) Williams' toggle problem, (c) two-dimensional freme problem, (d)
thermal problem, and (e) soil problem.

6.1.1.1. Beam-column problem Figure 20 shows a besm=column
(HP 14 x 73) with a concentrated lateral load, Q, acting on the midspen.
Only geometric nonlinearity was considered here. The theoretical
displacement at the midspan can be evaluating by solving the classic
differential equation for a beam-column [69] (refer to Fig. 20). Fig. 20
shows the relation between P and 8, if P is allowed to incresse. The
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load-displacement relation is not linear. This is true regardless of
vhether Q remains constant (solid line) or increases proportionally with
P (dagshed curve). The displacement of a beam-column is, thus, a linear
function of Q but a nonlinear function of P. The results obtained by
running the IAB2D computer program (two beam elements) are also plotted
in Pig. 20. Significant differences between these results and the

classical bean column solution occur only when P approaches Pcr‘

-

6.1.1.2. Short column problem Figure 21 shovs a short thick
column vith negligible geometric nonlinearities. Simple plastic theory

assumes that a member subjected to pure bending vill sustain a certain
liniting bending moment value, up. If a member is sudbjected to the
combined action of bending moment and axial forces, the maximum moment
capacity is reduced [70-72]. Three different applied load cases are
analyzed in this example:

Proportional Loading
Case (1) e = -g- = ® (pure moment)

Case (2) e = 0.kéT*
Nonproportional Loading

Case (3) O increessed to 0p andAheld equal to zero,

then & increased as0 is held constant.

The results obtained from the above load cases are plotted in Fig. 21.
Theoretical values are also shown. The computer program gives satis-
factory agreement with theoretical values. Case (3) illustrates that
the moment decreases as the rotation is held constant and the axial

deformation is increesed.
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6.1.1.3. Snap-th h problenm Pigure 4.22 ghovs a simple
symmetric truss with a concentrated load at the top. This type of prob-
lcem can be solved by incrementing the deflections (rather than loads).
The load-deflection curve is shown in Pig. 4.22, Several positicns
can be used to check the results. When the truss has a deflection vhere
A equals 1.2 in. (the truss is in the horizontal position), the truss
resists no lcad. If the truss has a deflection wvhere A equals 2.4 in.
(the truss is below horizontal by 1.2 in.), the strain is zero and,
hence, the bar forces are zero. If A is greater than 2.4 in., the truss

members are in tensicn and the load increases.

6.1.1.h. Williams® toggle prodblem The Toggle shown in Fig. 23
is the same problem as the previous section except the ends are fixed.

The load-deflection curve can be obtained by using specified load or
displacement as shown in Fig. 23. A similar problem vith different
material and geometric properties was first analyzed and tested by Wil-
1iams [73]. The lcad-deflection curve in Fig. 23 shows that the shape
is compatible to the Williams' test results.

6.1.1.5. Two-dimensional frame problem A tvo~-dimensional square
portal frame subjected to two vertical loads and a small horizontal lecad
is shown in Pig. 2. The theoretical buckling loads for the side-sway
mode are: P_. (fixed base) 4605 kips, and P . (hinged base) 1170 kips
[74]. The horizontal load for the finite element analysis is quite
small (0.001 P) but is sufficient to initiate geometrically nonlinear
behavior. The load-deflection curves for both cases (fixed base and
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hinged base) are shown in Pig. 2i. The numerical results show that a
lover bound on the critical load for the fixed base is 4600 kipe and
for the hinged base is 1150 kips.

6.1.1.6. Thermal problems Several thermal problems vere used
to check thermal strain caused by temperature changes: (a) cantilever
beam, subjected to uniform and gradient temperature changes; and (b)
fixed-end beam, subjected to uniform and gradient temperature changes.
The results, although not shown here, compared exactly with theoretical

solutions.

6.1.1.7. Soil problems Soil models were also tested in the tvo-
dimensional computer progran by checking the lateral and axial behavior of
the soil springs. A rigid pile vas analyzed with IAB2D by specifying loads
and displacements in the axial and lateral dircctioni to cbserve soil
responses. The theoretical displacements should follow the p-y, -z, and
q-z curves. The numerical results were identical to the theoretical

ansvers and are not showm here [5).

6.1.2. Three-dimensional analytical verification

Three sample problems vere analyzed with the three-dimensional pro-
gram: (a) large deflection analysis of a shallow arch; (b) large dis-
placement, three-dimensional analysis of a 45° bend; (c) a simple soil
problem to check soil nonlinearity and cyclic behavior.

6.2.2.1. Large deflection snalysis of a shallow arch The
clamped circular arch with a single static load at the apex was analyzed



73

for buckling using the beam-column element, as shown in Fig. 25. The
material of the arch vas assumed to be isotropic linear elastic. One
half of the arch was idealized using six equal beam-column elements.

This arch vas also analyzed by Bathe and Bolourchi, who used 6,
12, and 18 equal beanm elements and 8 six-node isoparametric elements
vith 2 x 2 Causs integration [L43]. Mallet and Berke used k4 "equilibrium-
based" elements [75]. Dupuis et al. [76] analyzed the same arch using
curved beam elements. In addition, the experiment results given by
GJelsvik and Bodner [77) are also showvn in Fig. 25.

Fig. 25 shovs the predicted lcad-deflection curve of the arch cb-
tained by using IAB3D. 1In this analysis, the use of beam-column elements
is quite effective, and the numerical results match the experimental

results.

6.1.2.2. large displacement three-dimensional analysis of a L3°
bend The large displacement response of a cantilevered 45° bend beam

subjected to a concentrated end load, as shown in Pig. 26, was calculated.
The concentrated tip load is applied in the positive Y direction. The
material was assumed to be linearly elastic.

The linear and nonlinear solution of this curved beam subjected
to a tip load was given by Bathe and Bolourchi [43) by using 8 equal
straight beam elements and 16 sixteen-node, three~dimensional solid
elements. Fig. 26 shows the tip deflection predicted by ADINA using the
tvwo finite element models [78]. The ADINA solution, obtained with a
large number of elements and load steps, should be regarded as the

most correct answer.
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The numerical results obtained by using the IAB3D computer progranm
vith eight equal, straight beam-column elements is also shown in Pig. 26.
The predicted tip deflections match with ADINA solutions. Fig. 27 also
shows the deflected shapes of the bend at varicus load levels.

6.1.2.3. Soil prodblems Several soil problems were analyzed to
check the soil material nonlinearity and cyclic dehavior. Since the

vertical, lateral, and point springs are assumed to be similar and
uncoupled, only the lateral springs are considered here. For example,
suppose an HP 1h x 73 pile vas embedded belov the ground as shown in
Fig. 286. The soil responses can then be cbserved by specifying loads
and displacements in the Y and Z directions. Theoretical displacements
and soil resistance follov the p-y curve path. For a specified lcad,
the displacement will be cbtained from the Newton-Raphson solution
algorithm. For a specified cyclic loed and displacement, the sofl
response vill follow the modified Ramberg-Osgood cyclic curves. Figs.
29 and 30 show the soil response for specified cyclic loads in Y, Z,
and YZ directions, respectively.

¥ig. 29 shovs that the maximum displacement in Y and Z directions are
the same (1.5 in.). Since the length of the web and flange for the H pile
are very close, both directions have identical p-y curves. The maximum
displacement in the YZ direction (FPig. 30) is not the same as it is in
the Y and 2 directions (Fig. 29), even though the total applied forces
are equal, 8Since the soil springs in the Y and Z directions are assumed
to be independent, the total applied force in YZ direction can be resolved

into ¥ and Z components (707 kips). Tnese forces produce maximum displace-
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ments in both the Y and Z directions at 0.9 in. or a total of 1.3 in. in
the YZ direction vhich is less than the maximum displacement for Y and Z

cases.
6.2. Experimental Verification

The results from four experimental pile tests will nov be compared to
results from the IAB2D program. The experimental tests consist of an axial
lcad test on an end-bearing H pile, latersl locad tests on drilled concrete
piers and on timber piles, and axial and comdbined load tests on a timber
pile. Preliminary investigations of the first two examples were conducted
by Yang et al. [5]. The revised investigations of these tvo examples and
the tvo final examples vere conducted by Eémunds [79]. The results are
summarized herein for completeness, i.¢., to document the analytical

method and the associated computer program.

6.2.1. Load transfer in end-bearing steel H piles

In Ref. [80], the increase in the lcad-carrying capacity of an end~-
Yearing pile due to load transferred to the surrounding seil by friction
vas experimentally studied. Site conditions, pile driving, and instru-
mentation were examined. The strain-gage reedings vere analyzed to
determine the distribution of the load transferred by friction along the
piles. The piles were loaded end unloaded in increments to 150 kips,

300 kips, 450 kips, and 600 kips. From the plots of pile load as &
function of depth, the true elastic shortening can be obtained, and the
total displacements at each point of the pile can be calculated by adding
the accumulated elastic shortening to the observed tip displacements [5].

Two sets of f-z and g-z curves (one set for each pile) can be constructed
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{30 ]. Since all the pile lcad tests vere held at the same site, the
final set of f-z curves was taken as the average of the f-z cufves from
the HP 1k x 89 and HP 14 x 117. Soil parameters for the modified Ram-
berg-0sgood cyclic curves are obtained by approximately fitting the
irregular shape of the average f-z curves and g~z curves. The pile is
subdivided into eight elements of unequal length. The Ramberg-Osgood
parameters used in the analysis are given in Tables 9 and 10. The load-
settlement curves for the HP 14 x 117 pile, both observed and predicted
values, arc plotted in Fig. 31. The results calculated from the computer
solution (IAB2D) are a fairly gocd approximation to the results obtained
in the experiment.

6.2.2, Lateral load tests on drilled piers in stiff clay
Two drilled piers were selected from the laterally loaded pile tests

conducted by Bhushan et al. [81], Measurements of horizontal ground line
displacements were made for two piers. Soil properties, as determined by
borings at each test site, are sumarized in Table 11. The two piers
were constructed with a spacing of about 20 ft. and were loading by
Jacking between them. Displacements of the piers were measured by the
dial gauges located one ft. above ground surface. The properties of
Table 11 are consistent with a very stiff clay. Thus, the p=y curve
was approximated using the Ramberg-0sgood parameters for very stiff
clay given in Table 3.

The displacements at the top of the pier are plotted in Fig. 32
(Pier Mo. 1) and Fig. 33 (Pier No. 2). A comparison between the pre~

dicted values obtained from YAB2D and the experimental results shows
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that the results are wvithin limits usually expected with this type of
analysis (30 percent approximately). The error in the initial stiffness
in these figures is caused by the approximation of the initial slope of

the p=-y curves.

6.2.3. lLateral 1load tests cn timber piles
Lateral load tests vere conducted by Alizadeh [82) on four instru-

mented, Class B timber piles at tvo sites approximately 1000 ft. apart.
The tvo piles at each test site vere seven ft. apart. The soils at Test
8ite 1 consisted of four ft. of sand and gravel underlaid by layers of
clay. The solls at Test Site 2 consisted of a layer of "fat clay” over
layers of silt and "lean clay."” At both sites, the clay soils had a soft
to medium consistency. The timber piles used vwere 53 ft. long and vere
slightly tapered (one ft. diameter near the ground surface and 0.8 ft.
diameter near the tip). The modulus of elasticity of each pile vas
determined from calibration tests and is given in Table 12 [82]. Por
the clay and silt soils, average undrained cohesion values of 620 psf
at Test Bite 1 and 670 psf at Test SBite 2 were used. For determining
the Ramberg-Osgood parameters in Table 3, these soils were assumed to
be soft clay. The sand and gravel layer at Test Site 1 was assumed to
be a medium sand. A constant pile diameter equal to the averasge diam-
eter of the upper half of the embedded portion of the pile was used.
The ultimate strength of the timber was estimated to be 7230 psi [83].
The experimental results and the results obtained with the finite
element program are compared in Figs. 3% to 36. For the smaller loads,

.
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the results from the program for piles 1-A and 1-B are close to the
experimental values, but for the 20 kip applied lcad, there is quite

a difference (Figs. 34 and 36). The computed results were not as close
to the experimental results for piles 2-A and 2-B., The discrepancies
are mainly due to inadequate modeling of the soil, that is, the variation
of soil properties with depth vas not clearly defined. Better computed
results could be obtained if more information on the variation of soil
properties vith depth \fcre available. Some accuracy is also lost by
approximating the soil resistance-displacement curves with the Ramberg-
Osgood equation.

6.2.4. Pile response to axial and lateral lcading

Combined axial and lateral load tests vere conducted on three pile
groups and on a single pile by Stevens et al. [84]. The experimental
data for the single pile will be compared to values predicted by the
finite element program. The soi) profile at the test site is shown in
Pig. 3T. A schematic diagram of the pile is also shown in Fig. 37. The
piles used in the test were untreated green Douglas fir piles. The
modulus of elasticity and ultimate strength of the timber were taken to
be 2000 ksi and 3615 psi, respectively [83]. The piles had initial
lengths of 43 to kS ft.

The piles vere subject to four types of tests: cyclic preloadirng,
pile driving effects, axial load testing, and combined load testing.
The results of the axial and combined load tests will be presented here.
Por the axial load tests, the loads were applied in 60 kip increments
until failure. For the combined lcad test, an axial load of 60 kirs
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vas first applied to the pile. Then, a lateral load vas applied to the
pile 28 in. above the ground surface in increments of 12 kips until
failure. The lateral deflection vas measured 33 in. uboée the ground
surface.

For the finite element program, the 20-ft.-thick layer of sand near
the surface vas assumted to be medium sand. The silty clay and sandy silt
layers vere modeled as stiff clay and the layer of sand near the bottom
of the pile vas assumed to te dense sand. The curve parameters for each
layer vere determined from the equations in Tables 3, k, and 5. A
constant pile diameter of 11.75 in. was used for the computer analysis.
The boundary conditions used in the computer analysis are shown in Fig.
37. The pile vas assumed to be pinned at the top of the vertical hydrau-
1ic jJack. The pile cap and hydraulic Jack vwere modeled as a single rigid
clement.

The results of the experimental tests and the computer analysis are
gshown in Figs. 38 and 39. These figures show that the results cbtained
using the finite element program are close to the observed values, al-
though the finite element program does predict & lower ultimate load
for the axial load test.



8o

T. PILE BEHAVIOR IN INTEGRAL ABUTMENT BRIDGES

T.1. Introduction

An idealized mathematical model of an integral abutment bridge
is shown in Fig. 3. In the soil-pile interaction prodlem, the pile will
take a shape similar to the solid line in Fig. 40, as the pile is sud-
Jected to the specified lateral displacement Ah (to simulate induced
thermal expansion or contraction) and no rotation (since the bridge
is much stiffer than the pile) at the pile top. As the vertical load V
(to simulate the bridge lcad) is applied, the pile deflects as illustrated
by the dashed line. As can be seen, scme of the soil springs will be
subjected to locad reversals (cyclic loading). Similarly, scme of the
pile moments are reversed during this loading history. A modified
Ramberg-0sgood cyclic model (see 3.2.3) for soil and pile cyclic behavior
has been adopted. A typical pile (HP 10 x 42) in an integral abutment
bridge vith an cmbedded length of about 4O feet will be used to evaluate
the ultimate vertical lcad capacity after the specified lateral displace-
ment has occurred. Timber and concrete piles are also inciudcd in this
study. 8ix typical Iova soils (Tables T and 8) were selected to study
the soil-pile interaction in integral abutment bridges.

T.2. Steel Piles in Nonskewed Bridges

7.2.1. Friction and end-bearing piles
The effect of the horizontal pile top displacement on the pile ca~

pacity for friction and end-bearing piles bending about the weak axis
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vill be analyzed. The point spring resistance in the end-bearing piles
is taken to be large to simulate stiff rock. In the IAB2D program, the
total displacement An is applied in increments of 0.5 in., vhile V is
held equal to zero. Once the total Ah is achieved (0, 1, 2, or b in.)
V is increased in increments of § kips or 10 kips until the vertical
capacity of the pile is reached.

Results obtained by running the IAB2D program will be presented
here to showv the behavior of a steel H pile embedded in Iowa soils.
(Chapter 3 summarizes the soil properties.) Sets of vertical load-
settlement curves vith specified lateral displacements (see Fig. L0) for
a friction pile in very stiff clay and end-bearing piles in soft clsy and
loose sand are shown in Fig. 41 through 43 respectively. These are typi-
cal of the other cases. The ultimate vertical load V“ is determined
from a load-displacement diagram using the following procedures. For
piles vhose load-displacement curve exhibit a definite maximum load, this
maximum load is taken as the ultimate load. For all other piles, a line
vith a slope of A!{IL is drawn throvgh the origin of the load~-displacement
curve. A second line, which intersects the scttlement axis at (0.15 +
0.1b) inches, is drawm parallel to the first line. The value b is the
diameter or width of the pile in feet. The intersection of the second
line and the load-displacement curve gives the ultimate vertical load [5,
85). Hondimensional forms of the ultimate pile locad ratio V /V  versus
the specified lateral displacement Ah for friction piles and end-bearing
piles in different types of Iowa soils are shown in Figs. bk and LS5,
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respectively. The value vuo repregsents the ultimate load when there is
no induced lateral displacement.

Fig. Ul shows that a lateral movement up to U in. has no effect
on the vertical load capacity of friction piles. These results indicate
that for friction piles, the failure mechanism (slip mechanism) occurs
vhen the soil fails and pile slips through the soil. The load capacity
of the pile for the slip mechaniem is equal to the sum of the load carried
by skin friction along the length of the pile and the load carried by
end-bearing at the pile tip.

In the end-bearing piles the failure mode is dominated by the yield
load of the pile. The slip mechanism does not occur. Fig. 45 (a and b)
showvs that the ultimate load-carrying capacity of the pile is reduced in
soft clay ind loose sand. Since the lateral stiffness of the soil in
soft clay and loose sand is relatively small, the pile is permitted to
deflect laterally under vertical load and the lateral failure mode even-
tually develops. For the stiff soils, the full yield lcad of the pile is
developed before lateral motions are permitted.

7.2.2. Effect of cyclic lateral displacements

Tvo cases are presented here to illustrate the effect of cyclic
lateral displacements on pile capacity: friction piles in very stiff
clay and end-bearing piles in soft clay. These are the cases most likely
to be affected by cyclic loading. The specified lateral displacement is
cyclically applied; for example, Ah is cycled from +1.0 in., to ~1.0 in.
to #1.0 in. The vertical load V is then applied.
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The resultant set of vertical lcad-settlement curves, after the
specified cyclic lateral displacements for a friction pile in very stitt
clay and end-bearing pile in soft clay, are identical to those shown in
Pigs. L1 and b2 respectively. These results show that the vertical load

capacity is not significantly affected by the cyclic lateral displacements.

7.2.3. Effect of pinned pile top

The condition at the pile top, vhich is embedded in the concrete
abutment, depends on the relative stiffness of the superstructure and
the abutment. The top of the pile can be assumed to be (a) fully
restrained without rotation (fixed pile head), (b) partially restrained
allowing some degree of rotation, or (c) pinned, allowing complete rota-
tion freedom (pinned pile head). The friction and end-bearing piles with
fixed pile heads in very stiff clay and soft clay have been discussed
in Bection T7.2.1. The friction and end-bearing piles with pinned pile
heads in very stiff clay and soft clay will be presented here. Results
obtained from IAB2D computer program shows that the load capacity of the
friction pile is not affected by the boundary condition on the pile top.
In both cases, the failure mechanism is controlled by slip. Fig. L6 shows
the nondimensional forms of the ultimate vertical load ratio versus
specified lateral displacements of end-bearing piles vith pinned pile heads
in very stiff clay and soft clay. In the case of the end-bearing pile
with a pinned head, the load capacity is reduced more in soft clay than in
very stiff clay (FPig. hiSa. and Fig. 46), The failure mechanism in both

cases is controlled by the lateral mechanism, which is affected by the
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number of plastic hinges and the lateral soil resistance. The fixed head
requires an additional plastic hinge to form before failure. The reduced

luteral resistance of goft clay more easily permits the lateral mode.

T.3. Nonskewed Bridge Example

7.3.1. Bridge studied
A nongkewed bridge located at State Avenue over U.S8. 30, Story

County, Ames, Iova, was chosen as an example to investigate the behavior
of an integral abutment bridge subjected to thermal expansion and con-
traction. FPlan and elevation views of the bridge are showm in Pig. U7.
It is a 2hS-ft.~long, prestressed concrete bridge with integral abut-
ments and piers. There are no expansion joints on the bridge; hovever,
expansion joints are located in the approach slab about 20 ft. from
each end of the bridge.

A section through the bridge deck is shown in Fig. 48. Pre-
tensioned, prestressed concrete beams were used to support a poured~ine
place concrete deck. The beams and deck were designed to act as a mono-
lithic unit, even over the piers. The steel piles, pier cap, diarhresgnm,
concrete beam, and concrete deck were all reinforced to behave as a
single unit. A section through the abutment is shown in Fig. 49. The
pile is oriented with its strong exis along the roadway center line
(bending about the weak axis) and is reinforced within the abutment cap
and diaphragm to transmit the full plastic moment of the pile (HP 10 x k2).
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More details about the State Avenue bridge can be found in Iowa Department
of Transportation design sheets, File No. 22616 and Design No. 267.

7.3.2. Mathematical model of the bridge
The proposed mathematical model of the State Avenue bridge is shown

in Fig. 50(a). Two types of prustressed concrete beams, C30-50 and C80,
are used in this bridge. A simplified two-dimensional model of the
bridge, vhich contains one concrete beam, a section of the abutment and
pile cap, and one pile as shown in Fig. 50(b), vas used. The cross-
sectional properties have beon calculated based upon this idealization.
Note also that the bridge vas assumed to be symmetrical about the mid-
length. Fig. 51 shows the section through the abutment and the soil
profile. The granular backfill is considered as dense sand. The abut-
nent pile was driven in an 8-ft. deep, oversized hole through the fill.
Voids around the pile are assumed to be still empty. The finite eclement
model is shown in Fig. 52. 8Six beam~column elements, each 20 ft. long,
are used to represent the concrete beam; two beam-column elements, each
3.75 ft. long, are used to represent the abutment and pile cap; and 12
elements with unequal length are used to represent the pile. There are
no vertical soil springs along the abutment and the predrilled coversized
hole. No lateral soil springs are attached within the predrilled over-
sized hole. Soil properties based on the Iowa soils are calculated.

The temperature change is taken as «60° F to +60°F from the construction

temperature [35].
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1:.3.3. HNumerical results

Several cases have been investigated in order to fully understand
the behavior of the integral abutment bridges with thermal expansion
and contraction. These are: (a) no thermal changes, (b) with +60°F
temperature changes, (c) vithout backfill, with +60°F temperature
changes, (d) vith a complete cycle of temperature changes (-60°F to 460°F),
and (e) without concrete bridge model, but with specified lateral dis-
placements equal to the displacements in case (b). After each of these
loadings, a vertical load is applied at the top of the pile until fail-
ure (Pig. 52).

Vertical load-settlement curves obtained with IABZ2D progran are
shown in Fig. 53. Case (e) is actually a single pile vith an abutment
attached to it, very similar to the cases in Sec. 7.2. It fails by the
slip mechanism vhen the applied load exceeds the friction force of the
soil springs. The rest of the cases 4o not fail at this level, since
the pile is part of the bridge model. As the pile moves downvard,
the concrete bridge beams carry some load as a cantilever type
structure. Cases (a) and (b) have noticeably different load-settlement
curves. In case (b), the +60°F temperature change expands the beams and
activates the passive soil pressure behind the abutment. (See dizgram
in Fig. S5k.) Since the beam and abutment are not colinear, a moment M
and shear Vs ere introduced fnto the concrete beam. The shear vs, equal
to about 20 kips in this case, is applied to the pile. In other words,
the pile is subjected to a 20-kips downward load before the verticsal

live load is applied. From Fig. 53, cases (a) and (b) do have a 20-kips
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difference in ultimate load. This is also confirmed by case (c), which
is identical to case (b) except that the backfill is removed. In this
cagse, the initial 20-kip pile load is not introduced and the load-
settlement curve is about the same as case (a). A compariscn of cases
(v) and (&) shows that there is no difference in lcad-settlement curves
for cyclic and noncyclic thermal changes.

T.k. Steel Piles in Skeved Bridges

As illustrated in Appendix B, pile orientations for steel H piles
in integral abutment, skeved bridges can be classified into four types:
the web of the pile perpendicular (Type 1) or parallel (Type 2) to
the roadvsy center line, and the web of the pile parallel (Type 3) or
perpendicular (Type 4) to the center line of the abutment. In addition,
some states use circular piles (Type 5) in integral abutments on skeved
bridges. In ecach of these types, the pile is bending about its weak axis,
strong axis, or a combination of both. Bending of piles about the weak
axis was discussed in Sec. T.2. Before proceeding to an actual bridge,
individual piles displaced laterally about the strong axis and at 45° to
the strong and weak axis vill be studied.

7.k.1. Bending about the strong axis

For H piles bent about tke strong axis (displaced along the weal
exis), the analysis procedure is the same as in Sec. T.2.1., except
the pile cross-sectional properties are rotated 90°, The two-dimensional
program TAB2D can still be used for this case. A set of nondimensional

curves of the ultimate pile load ratio (‘lu/Vuo) versus the specified
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lateral displacement (Ah, in the direction of the weak axis), for end-
bearing piles in different types of Iowa smoils, are showm in Pig. 55.
The pile heads are fixed against rotation in these figures.

Results obtained from the IABZ2D computer program show that a
laternl movement of up to four in. has no effect on the vertical load
capacity for friction piles. This is not true for end-bearing piles,
since the failure mode is dominated by the yield load of the pile. |
The slip mechanism does not occcur. PFig. 55(a) shows that end-bearing
plles with a fixed pile head and bending about the strong axis have a
significantly reduced ultimate load capacity in very stiff clay.

Pig. 56 shows the vertical lcad-settlement curves of end-bearing
piles with fixed pile head displaced four in. laterally for soft clay,
stiff clay, and very stiff clay. These curves show that the peak load
(point of zero slope) for very stiff clsy is greater than for stiff
clay, vhich is greater than for soft clay. The peak locad is not affected
by the residual stresses which, in this case, are due to the plastic
hinges formed by the initial lateral motion [76]. However, as Fig. 56
clearly shows, residual stresses do affect the load-settlement curve.

For the very stiff clay, two plastic hinges formed {n the pile durin:

the four in. lateral displacement. For soft clay and stiff clay, only
one plastic hinge formed. This plastic hinge formation does significancly
affect the load-settlement curve of the very stiff clay pile; the tangent
stiffness is noticeably reduced at point A in Pig. 56. Hence, the ulti-
mate load for the very stiff clay case, as determined by the offset dis-

placement method, is less than for soft clay and stiff clay.
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T.b.2, Friction and end-bearing piles bending about the LS° axis

If pile orientations of types 3 and b are adopted for construction
convenience, the thermal expansion or contraction along the rcadway
center can be divided into components parallel and perpendicular to the
pile ved (see Appendix B). Thus, the piles in integral abutment skeved
bridges vill be subjected to biaxial bending resulting from thermal
movement. Piles displaced at L5° from the major axes will be analyzed
in this section to illustrate the effect of biaxial bending. The same
loading procedurec is used as in Sec. T.h.l. except that the specified
lateral displacement Ah is measured in a direction 45° from the princi-
pol axes (See Fig. 28). The three-dimensional computer program IAB3D
is used to calculate the load capacities of friction and end-bearing piles.

For friction piles, results obtained from the IAB3D program show
that the load capacity of friction piles is not affected by applying
the specified lateral displacement i (0, 1, 2, or b in.) in the 45°
direction for all Iown soils, since failure is controlled by the slip
mechanism. This agrees with the results obtained from the previous
séctions.

The ultimate vertical load ratio for end-bearing piles with
specified displacementd, (0, 1, 2, or b in.) in the direction of k5°
axis is shown in Fig. 57. In this case, the load capacity of end-
vearing piles is affected by the specified movements at the top, since
failure is controlled by the lateral mechanism. It is interesting to
note that the load capacity of end-bearing piles bent about the 45° axis

is between the load capacity of end~bearing piles bent about the weak
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and strong axis (Sec. 7.2.1. and 7.h.1.). The upper bound and lover
bound on the load capacity of end-bearing piles can be estimated from
the veak or strong axis bending. As an expendient solution, analysis
can be accomplished by a simplified two-dimensional analysis.

T.b.3. BEffect of pinned pile top

In this section, the effect of a pin at the pile top on friction
and end-bearing piles bent about the strong axis wvill be demonstrated.
Piles in very stiff clay and soft clay will be studied. Results obtained
from the IAB2D shov that the lcad capacity of the friction piles is not
affected by the boundary condition at the pile top. In both cases (fixed
and pinned), the failure mechanism is controlled by the slip mechanism.
This is not true in the case of an end-bearing pile (compare Figs. 55(a)
and 58). For pinned piles displaced four in. laterally, the tangent
stiffness of the load-settlement curve in very stiff clay is not reduced
as significantly as it was at point A in Fig. 56 for fixed piles. Hence,
the vertical load capacity, as determined by the offset displacement
method, is not noticeably reduced.

7.5. Skeved Bridge Example

In this section, a skeved bridge with integrel abutments {s used to
investigate the behavior of the piles under temperature changes. Tae
bridge in Sec. 7.3. is used as a skewed bridge in which the skew angle
is 30° (see Fiz. 59). The pile orientations are classified into four
different types as mentioned in Sec. 7.3. These four different types of

pile orientations, as shown in Appendix B, will be discussed here.
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Since the same bridge is used in this example, the properties of
prestressed concrete beams, abutments, piles, and soil profiles are the
same as in Sec. T.3. The mathematical model for this skewved bridge is
algo gsimilar to the one used in Sec., T.3. except that a three-dimensional
model is required to account for the effect of the skew. This three-
dimensiocnal model includes a concrete beam, abutment, and pile. Only
one=half of the bridge in this model is analyzed by taking advantage of
the symmetry about the midline of the bridge. The global ccordinates as
shown in Fig. 99 are selected to impose the symmetry requirement. Ro-
tations about the global X-axis at the abutments and piers are considered
to be restrained because of the diaphragm underneath the concrete beanm.

Four types of pile orientations in the abutment are considered and
are loaded with the followving cases: (a) without thermal changes,

(b) with +60°F temperature changes, and (c) without bridge beam and with
% for +60°F temperature changes. Results obtained from the IAB3D pro-
gram shov that there is no significant difference in the lcad-settlement
curves for different pile orientations, that is, the load-setilement
curves will not be affected by the pile orientations (see Fig. 60). This
agrees with the results in the previous sections which indicate that
bending about weak, strong, and 45° axes do not affect the vertical lcad
capcity of friction piles which fail by the slip mechanism. As in the
tvo-dimensional case, as the applied load exceeds the pile friction
resistance, the excess load will be carried by the concrete beams as &
cantilever type structure. Hence, case (a) continues to carry an

increasing load beyond case (¢). Cases (a) and (b) have a noticeable
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difference because of the pile pre-lcad induced dy the thermal expansion,
ag illustrated in Fig. Sk.

The deflected shape of the skeved bridge (in the plan view) after
thormal expansion is also shown in Fig. 59. If the soil springs acting
cn the atutment in the tangential direction, which respresent the friction
resistance of the backfill, 4id not exist, the bridge vould move toward
the upper right.

7.6. Timbor and Concrete Piles

Piles are available in a variety of sizes, shapes, and materials to
gsuit many special requirements, including economic competition. Plles
can be classified by the principal materials of which they consist, for
example, timber, concrete, and steel piles. Stecl H piles have been
discussed in Secs. 7.2. and 7.k, Circular timber and concrete piles
vill be investigated in this section.

Timber piles are provably the most commonly used type. Under meany
circumstances, they provide dependable, economical foundations. Their
length is limited by the height of available trees; piles 20 to LO ft.
long are cormon, but longer ones cannot be obtained ecomomically in all
areas.

S8ince concrete piles were initially used shortly before 1900,
several types of concrete piles have been devised. Today, an engineer
may choose those best suited to a particular project. Concrete piles

may be divided into two principal categories, cast-in-place and precast
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piles. The cast-in-place piles may be further divided into cased and
uncaged piles.

A Douglas fir timber pile and a cast-in-place concrete pile, both
one ft. diameter and 20 ft. long vill be investigated hex:e. Table 13
ghovs the material properties of timber and concrete piles [8i]. The
stress-strain relationghip of the timber pile can be represented by the
modified Ramberg-Osgood cyclic model. For concrete piles, reinforcing
bars are used to resist the tensile force for the internal moment.

The beam element in the current program dces not have the capability of
modeling the poste-cracking behavior of reinforced concrete piles. The
representation of the bond/anchorage/cracking behavior of reinforced
concrete is a complex phenomenon vhich has not been completely solved
by state-of-the-art methods. The scope of this project did not permit
incorporation of such behavior. In addition, since the pile is pre-
dominantly in axial compression, the compression characteristics of
the material will dominate. The compression stress~strain relation of
the concrete pile is idecalized by the modified Ramberg-Osgood cyclic
model.

Using the same procedure as in Sec. 7.2.1., results indicate that
the vertical load capacity of timber and concrete frictior piles with
fixed pile heads in six types of Iowa soils is not reduced by & latersl
movement of up to two in. The failure for both timber and concrete
friction piles with vertical loads is by the slip mechanism. Point

bearing timber end concrete piles are not analyzed.
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As described above, these analyses are based upon 2 Ramberg-Osgood
representation of the timber and concrete rnaterials, vhich implies
unlimited ductility. This is not necescarily true. Hence, the above
conclusion that the capacity of a friction pile is unaffected by lateral
displacements of up to twvo in., vill be true only if the pile has the
ductility to develop a full plastic moment and, subsequently, to behave
as a plastic hinge for the required rotations. The results of the finite
element analysis indicate that, for a tvo in. lateral displacement, the
plastic hinge rotation required at the top of a pile is approximately
0.04 radians over a 24 in. length in timber and over a 12 in. length

in concrete.
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8. SUMMARY, CONCLUSIONS, AND FURTHER WORK

8.1. Summary

The highvay departments of all fifty states vere contacted to find
the extent of application of integral abutment bridges, to sur'}ey the
different guidelines used for analysis and design of integral abutment
bridges, and to assess the performance of such bridges through the years.
The survey shoved a wide variation in design assumptions and limitations
among the varicus states in their approach to the use of integral abut-
ments. The survey also shoved that the variations among the different
states are due largely to the empirical basis of current design criteria,
thereby underscoring the need for a simple, rational method of accurately
predicting pile stresses.

The states that use integral abutments indicated that they were
generally satisfied vwith the performance of the bridges and these bridges
vere cconomical. Some problems have been reported, however, concerning
secondary effects of inevitable lateral displacements at the abutment.
These include abutment, vingwall end pavement distress and backfill
erosion. Only a few states noted that any difficulty had been encountered.
Other states reported that solutions have been developed for most of the
111 effects of abutment movements.

Survey responses also indicated that 26 states use integral type
abutments on skewed bridges. Most states design integral abutments on
skewed bridges on the basis of empirical experience, and no theoretical

analysis is introduced in design. Pifteen states orient their piles
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with the web of the piles perpendicular to centerline of the abutment so
that bending will be primarily about the strong axis. Hovever, the
survey responses shoved that most states ignore thermally-induced bending
stresses caused by transverse and longfitudinal movement. No special
treatment is given to backfill and pile cap on skeved dbridges. As for
approach slab, it might be tied to the abutment with dovels, or an
expansion joint may be provided between the approuch slab and the bridge
slab.

The parameters needed to describe the behavior of the soil are given
in Chapter 3. Three types of soil resistance-displacement curves vere
developed: lateral, vertical, and pile tip. The parameters needed for
cach curve are the initial stiffness, the ultimate soil resistance, and
a ghape parameter. Each of these curves was approximated using a
modified Ramberg-Osgocd model. This model vas expanded to include
cyclic- loadings. The constants used in the modified Ramberg-0Osgood mcdel
for clay and sand wvere determined by approximating analytical expressiocns
of others. Six typical Iowa soils were fdentified for the use of
numerical examples.

An algorithm based upon a nonlinecar finite element procedure vas
developed to study the soil-pile interaction in integral abutment bridges.
The finite element idealization consists of a one-dimensional idealiza~
tion for the pile and nonlinear spring for the foundation. Incremental
finite elements with an updated Lagrangian formulation and material
nonlinearities were used. For the purpose of treating arbitrarily large

rotat.ions, node orientations were described by unit vectors. The nodal
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forces were evaluated by numerical integration through the cross
section. Explicit forms of the tangent stiffness in the element coor-
dinate are presented. Updating of the element coordinates in three
dimensions is also described. The numerical techniques available for
the solutions of the nonlinear equations are revieved, and the incre-
mental and iterative techniques used in the study are discussed in
detail. Two computer programs, IABZ2D and IAB3ID (Integral Abutment
Bridge Two- and Three-Dimensional Finite Element Computer Programs)
have been developed to sclve the nonlinear soil-pile interaction prob-
lems for both two- and three-dimensional cases. A number of analytical
and experimental examples have been analyzed to establish their relia-
bility.

In Chapter 7, many analytical examples are presented in vhich a
pile wvas given a lateral displacement to simulate the bridge expansion.
A vertical lcad wvas then applied until failure occurred. These examples
shoved that for the cases studied in Iowa soils, friction H piles exper-~
ienced no decrease in load-carrying capacity for lateral displacements
up to four in. This was true vhether the pile vas bent sbout the strong
axis, veak axis, or 45° from either axis. This was also true for timber
and concrete piles displaced up to tvo in. All of these cases failed by
a8 slip mechanism. However, end-bearing piles did show significant
reductions in load-carrying capacity for similar lateral displacements
and for bending about all three axies. These cases failed by a lateral
mehcanism. Other examples showed that the cyclic behavior had no effect.

Examples with skewed and nonskewed bridges showed no effect on the pile
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capacity since these pilés vere friction piles. Howvever, the longitudinal
expangsion of the bdridges introduced a prelocad on the pile which reduced

the effective pile capacity.
8.2. Conclusions

The ultimate load capacity for friction plles vas not affected by
lateral displacements of up to four in. for H piles and up to two in.
for timber and concrete piles., Howvever, the ultimate load capacity was
significantly reduced for lateral displacements greater than tvwo in.
for end-bearing piles. FPile orientation of friction piles does not
reduce the load capacity of the piles for lateral displacements up to
four in., but it does reduce the load capacity of the piles for end-
bearing piles. The load capacity of friction piles is not affected by
cyclic loedings.

A vertical prelcad was introduced on the pile by the thermal expan~
sion of the bridge as it pushed the abutment against the backfill. The
load capacity of the pile was, thus, effectively reduced.

For the time being, the maximum allowable length for bridges with
integral butments can not be determinted precisely. The safe length of
the bridge not only depends on the properties of the soil and piles, but
also on the backwall soil model, approach slab, etc. An approximation
of determining the bridge safe length based on the thermal expansion and
contraction on the structural integrity of the piles is

ZA"!
Lb - -a-s;-rj' (801)
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vhere l'b is the length of the bridge, & is the coefficient of thermal
expansion for the material in the bridge superstructure, AT is the
average temperature change, and Ah is allovable thermal movement.

It is important to note that analysis presented herein vas for
the structural integrity of the piles only. Other factors, notadbly the
effects of the abutment movement on the approach slab and fill and the
effects of the induced axial stresses in the superstructure, must also
be considered. While these factors have s relatively smoll effect on
shorter bridges, as longer bridges vwith integral abutments are built
these problems will become of greater fmportance.

8.3. Purther Work

1) A scale model of a pile in in integral abutment bridge could be
set up and tested in the laboratory. The experimental results
can be compared to the results obtained from the analytical methods.

2) An actual bridge could be instrumented to monitor thermal movements
and piling stresses during temperature change.

3) A study of the backfill and the approech slab under cyclic thermal
movements would determine the most suitable type of approach slab to
be used with the integral abutment type of dbridges.

L) A study of the effects of the pile preload caused by the thermal
expansion of the bridze is needed.

5) The effects of the abutment movement on the approach slab and fill
and the effects of the induced axisl stresses in the superstructure

need further consideration.
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Table 1. Integral abutment bridge length limitations (1981)

Number of States

Maximum Length Steel Concrete Prestressed

" 800
500
k50
k0o
350
300

N = F W N

250

O O W W R e

(2K T I - - B Y - )

150
100 1l
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Table 2. Flow chart for determining the reversal values of loading

and unloading
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Table 3, Analytical forms of p-y curves

Basic p~y Curves

Case Bquations P, (use lesser value) Esi
Soft Clay, p/p. = 0.5 (y/y 0)1, 3 p.*9¢cB —
Static Load u 5 u u
h 9.5
pus(3+eux+ 5 x)e“B
Stiff Clay, p/p. = 0.5(y/y )1/ b p,=9¢cB d
Static Load u % u u
h & 9.5
pu'(3*cux+nx)cu8 ——
Very Stiff Clay, p/p, = 0.5(y/y o)ll 2 P, *9¢,B
Static Load u E u u
h 2.0
=3+ —x+5=x)cB ——
u
Sand p/p = tanh(E_y/p ) p =yx[Blk -k)+ Jyx/1.35
Static Load u si" u P &

xxpmc(tans)«v
xkoms(tm¢~mc))

= 3
P, yx(kp + alfxo tand - ka.)B

201



Table 3. {continued)

Parameter Evaluation
CSO From laboratory triaxial teat, or use
= 0,02 for soft clay
= 0,01 for stiff clay
= 0,005 for very stiff clay
(Axia) strain at 0.5 times peak stress difference)
) Undrained cohesion indicated for an unconsolidated undrained labora-
u
tory test
B Pile vidth
Y Effective unit soil wveight
x Depth from soil surface
¢ Angle of intermal friction
2 )
kp = tan” (L5° + 2)
X = tan® (45° - )

=] - sind

v ot



Table 3. {(continued)
Parameter Evaluation
o a%tordenaeoraedimmd
= % for lonse sand
B = 45° + %
J = 200 for loose sand
= 600 for medium sand
s 1500 for dense sand
yso Disgplacement at o:}e-ha.lt ultimate soil reaction

= 2.5 B for soft and stiff clay

50

= 2.0 mso

for very stiff clay

QEoT
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Table k. Analytical forms of f-z curves and parameters

Case Basic f-z f max® X1f
Curve Equations R Piles Others
t(nay ) %——- - (2/z7zc - z/zc) The least of: The lesser of:
Static Load max
2(d+bf)cn 2&°c
2(d-r2hr e a z‘cu
z(dc“ﬂrc‘)
sand ) f— = (225, - 2/z)) o.0m(2(asav,)) 0.0He
Static Load mAx

@ = Shear strongth reduction factor (see Fig. 8.)
. = Undrained cohesion of the clay soil

= 97.08 + 114.0 (psf)
C, = Adhesion between soil and pile

= ac, (psf)

R = Aversge standard penetration blow count
z e = Relative displacement required to develop f max
= 0.k in. (0.033 rt.) for sand
= 0.25 in. (0.022 ft.) for clay
zs = Gross perimeter of the pile (ft.)
d = Section depth of H pile or diameter of pipe pile (ft.)

b, = Flange width of H pile (rt.)
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Table 5. Analytical forms of g=z curves and parameters

Basic g-2
Case Curve Equation Trax? kaf
Clay L u (z/2)/3 90
(Static case) Lrax ¢ u
Sand 1 a(2/z )23 8n
(Static case) Urax e corr
N = Corrected standard penetration test (SPT) blov count at depth

corr of pile tip

= § (uncorrected) if N < 15
= 15 + 0.5(8-15) if § > 15
c = Undrained cohesion of the clay soil
= 97.08 + 114.0 (psf)
z = Relative displacement required to develop Uy
= 0.4 in. (0.033 ft.) for sand
= 0,25 in. (0.021 ft.) for clay

N = Average standard penetration blow count




106

Table 6. Parameters used in the modified Ramberg-Osgood models for
clay and sand
p=y
Calculated Used
Soil Type n k!! n
P P
Soft Clay 0.669 ~ 2.5 — 1.0
Ys0 Y50
P P,
stiff Clay 0.915 - 1.07 i 1.0
yso yso
P P
Very Stiff Clay 0.539 - 2.56 -231- 2.0
Ys0 50
Jye
md 1.35 300
Calculated Used
Soil Type k n k n
T=2 b b g
(A1l Soils) 1.32 -i‘&-" 1.33 10 222 1.0
[ [
Q-z
(A1) Soils) 1.32 T 2.33 20 dnax 1.0




Table 7. Soil properties and curve parameters for sand

Typical
Value
For Loose Sand

Typical
Value
For Mediun Sand

Typical
Value

For Dense Sand

Soil Properties:
Blow count, N
Unit weight, y (pef)
Angle of friction, ¢
p~y Curve Parameters:
n

®, (k1)

LN {ks?)
=2z Curve Parameters:
n
V%
T ax {x17)
»
kv (ksr)

5
110

309

3.0
0.14x> + 0.29Bx
for x < 23B
3.58x
for x > 238

16x

1.0
0.5
150

15
120
35°

3.0
0.31x° + 0.41Bx
for x < 21B
T.0Bx
for x > 21B

53x

1.0
1.5
450

130
40

3.0
0.51:;2 + 0.5TBx
for x ¢ 278
15Bx
for x > 27B

1h0x

1.0
3.0



q-z Cuyrve Pavameters

n N 1.0 1.0
Lax {ksf) ko 120
kq {ke?) 12,000 36,000

%These values are for a HP10xL2 pile.
B = pile width (ft.)
x = depth from soil surface (ft.)

1.0

55,000

8ot



Table 8. Soil properties and curve parameters for clay

Typical Typical Typical
Value Value Value
For Soft Clay For Stirr Clay For Very Stiff Clay
Soil Properties:
Blow count, N 3 15 %0
Unit weight, (per) 100 120 130
Undrained cohesion
°, (psaf) Lo5 1569 5000
p=y Curve Parameters:
n 1.0 1.0 2.0
P, (x1r)
(use lesser value) 3.6B or 14B or 45B or
1.28+0,10Bx+0.20x 4 . 78+0.12Bx+0.78x 158+0.13Bx+10x
Ky (ksf)
(use lesser value) 73 or 560 or 2250 or
24e2x4hi . 1x/B 190+h .8x+31x/B T50+6 . Sx+500x
=z Curve Parameters:
n 1.0 1.0 1.0
foax (x1g)* 1.3 3.86 6.22



k. (ksr)* 6k0 1850
q~2 Curve Parameters:

n . 1.0 1.0

Sy (KST) 3.6 1%

Xy (ker) 1700 6700

*These values are for a HP1OxL2 pile.

1.0
b5

o1t
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Tadle 9. Ramberg-Osgood parsmeters for f-z curve

Depth below Ky £ n
max

surface (f't.) (kei) (k/in.)

0.0 to 3.0 2.19 0.39 0.85

3.0 to 9.0 3.11 0.h2 0.75

9.0 to 14.66 3.37 0.21 1.69
lh 066 to 21.0 0081 0.15 1055
21.0 to 26.0 3.03 0.95% 1.34
26.0 to 31.0 5.56 0.29 0.95
31.0 to 36.0 10.42 0.53 0.65
36.0 to 4.5 6.7h o.11 1.55
Table 10. Ramberg-Osgood parameters for ¢-z curve
Depth below k n
pile top (ft.) (xe1) m*)

Wk, 115.7h 3.47 0.50
Table 11. Soil characteristics -
Avg. undreined ¢

Pler Site Soil Total Unit shear strength 50 Depth
Ho. BNo. Type Wt.-=1bs/rt3 1bs/ft.C % t.

1 A Sandy Clay 130 5500 0.96 0~9

(CcL~CH)
2 B Sandy Clay 130 4750 0.72 0~ 16

(cn)
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Table 12. Modulus of elasticity for timber piles

Test Site Pile Avg. Modulus of Elasticity, E(ksi)
i 1-A 2000
1-B 2500
2 2-A 1900
2-B 2000

*Assumed, as no calibration test vas made on this pile.

Table 13. Material properties of timber and concrete piles

Piles Modulus of Elasticity Yield Stress
ksi ksi
Douglas fir timber pile 2000 7.5

Concrete pile 4300 k.0
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BRIDGE DECK
REINFORCED CONCRETE APPROACH SLAB

EXPANSION JOINT

WINGWALL

BATTERED PILING

- Fig. 1. Cross-section of a bridge with expansion joints

BRIDGE DECK
f REINFORCED CONCRETE APPROACH SLAB

|=-ﬁﬁ;-—;j =4

INTEGRAL—71

FLEXIBLE PILING ——>

Pig. 2. Crossw-section of a bridge with integral abutments
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A aTag € oOF THE
W BRIDGE
APPROACH SLAB l. R ¢ R
*L \ BRIDGE DECK
WINGUALL L GIRDER
N
£
,, \
s g )
(SOIL RESISTANCE) \\ = FLEXIBLE PILE

\
k \Vl
, | }+—DEFORMED FLEXIBLE PILE
LATERAL SPRINGS 1]
/
]

/
/

VERTICAL SPRINGS 2k
POINT SPRINGS

Pig. 3. Cross-section of the integral eabutment bridge with soil-pile
interaction
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pu e

)
u y

Fig. 4. Typical p-y curve wvith Ramberg-Osgood constants

l.Or—

0.8

p/p,

0.4

0.2

] ] i ]

] L
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
vy,

i+, 5, HNondimensional form of the modified Ramberg-Osgood eqiarnio:
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INITIAL
LOADING CURVE

—t— -
A0 6.0 8.0 Yu

2 [
=

8.0 6.0 4Jo 2.

CYCLE 2,3

Fig. 6. Hysteresie lcops in accordence with modified Ramberg~0sgood
cyclic model with n = 1.0
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—l

(o4 »¢4) (04413 64419)
PATH 1

(°1ﬂj -ﬁﬂ‘”

(o¢,1¢c,1) -c

PATH 1: {‘c.ﬂl " Ccd
9c,i+1 * %,1

PATH 2: { “Catel = &1
9%,i+1 * %

Fig. 7. The determination of reversal values for loading and
unloading
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AVERAGE CURVE FOR
CONCRETE AND
TIMBER PILES

0.0} AVERAGE CURVE
FOR STEEL PILES

| 1 i ' |
o.%oo 0-5 1.0 1'5 2'0 2'5 3.0
Cu (ka)

Pig. 8. Reduction factor « [13]
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a 0.5 F -0~ OTHERS
& & MODIFIED RAMBERG=- & MODIFIED RAMBERG-
e 08G00D 08G0OD
0. . 0.0 .
S.T 0.5 1.0 0.0 P, I°T
z/a z/zc
(a) For clay and sand (b) Por clay and sand
1.0
2 0.5 4§ - omers 0.5
E o MODIPIED RAMBERG~
08GO0D
0.0 ‘ 0.0 ‘
0.0 5.0 8.0 12.0 0.0 8.0 16.0 20.0
¥lygg ¥/¥so
(¢) For soft clay (d) For stiff clay
.0 T 1.0
o2
~
[+
2 0.5} - OTHERS 0.5
?‘ -4+ MODIFIED RAMBERG-
08GOOD
0.0 0.0
0.0 2.0 Lk,0 6.0 0.0 2.0 ko 6.0
(e) P y,ysoti ff ¢l gsit Ipu
e) Por very s clay (£) For

Pig. 9. Comparison between the analytical forms of the p-y, f-z, and
g-z curves by others and the modified Ramberg-Osgood models
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B |
LATERAL SPRING

SR \ IN Y DIRECTION
ME

IN 2 DIRECTION |
VERTICAL SPRING

B |
B

oy ] ]

=

POINT SPRING

X

Pig. 10. A combination of a one-dimensional idealization for the
pile and an equivalent nonlinear spring Ifdeilization for
the soil
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O LAGRANGIAN COORD.

10

#i. 1), DNonlinear finite element analysis approaches: (a) Bulerian approach, (b)
Lagrangian approach, (c) updated Lagrangian approach

T
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=X

Fig. 12.

Coordinate systeme and nomenclature
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Fig. 4. The coordinate updating of K node in three~dimensional
beam-column element
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> Y

LATERAL SPRINGS
IN y AND 2z DIRECTION

4 z
Fig. 16a. Idealized backwall soil model in integral bridge abutments

T

ﬂy

Fig. 16b. p-y curve for backwall soil model in element y direction
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& N

LINEAR PIECENISE = CLOSED-FORM
SOLUTION SOLUTION SOLUTION

( INCREMENTAL
LOAD)

jo—ad—<| (INCREMENTAL DISPLACEMENT)

Piecewise linear solution for a single degree-of-freedom
system

Fig. 1T7.
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4
d

Fig. 18, Characteristics of Mewton-Raphson iteration in a simple
one-degree~of~freedom



129

” .o

Dj Dj Dj"

Fig. 19. Increment-iteration or mixed procedure in a multi-degree-of=-
trcedt(m);tmcmre (Mewton-Rapheor. golution of the equaticn
F=£D
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THEORY |1AB2D .
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Figz. 20. Load-displacement curves for beam-column problem
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Fig. 21b. Cross section A-A
ANNAN \\\\\\\\\\\

Fig. 2la. A short ¢

4000

\\\
subjected to applied load

3000

2000
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emee THEORETICAL RESULTS

o= FINITE ELEMENT RESULTS (IAB2D)

0
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Fig. 2lc. N-O characteristics
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'2000 i

«16.0p—

-12.0p—

‘4 .0

Y P,A E = 29000 KSI
l 12" l
N R -X
1° r
1“0

BEAM CROSS SECTION

0.0 3%
44 .
-t
=
4.0

8.0 — 14820

1200 pro—
Pig. 22. Load-deflection characteristics of snap-through problem
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500
Y E = 29000 XSI
450}—
P, &
400}— 1
1]
NI T .
X
350l N~ §x.z"
10
lll
300}~
250}—
200}
150}
100~
- JAB2D
501
0 | |
0.0 1.0 2.0 3.0
" “‘.
Figz. 23. Load-deflection characteristics of togzle
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P, KIPS
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CASE a:

FIXED SUPPORTS
Py = 4605 KIPS

eSO e w—

P
'—.A

P

v

0.001P >

CASE b:

HINGED SUPPORTS
P, = 1170 KIPS

Figo 2&-

0.5 1.0
a, IN.

1.5

Load-deflection characteristics of two-dimensiomal
portal frame with fixed base and hinged base

neY



LOAD P, POUNDS

FOR HALF OF ARCH

== 18 BEAM ELEMENTS
NO EQUILIBRIUM ITERATION

® 12 BEAM ELEMENTS
NO EQUILIBRIUM ITERATION

O 12 BEAM ELEMENTS
WITH EQUILIBRIUM ITERATION

4 6 BEAM: ELEMENTS
NO EQUILIBRIUN ITERATION

EXPERIMNENT ° EMI: ELEMENTS
NO EQUILIBRIUM ITERATION

A 6 BEAM ELEMENTS, 1AB3D

[ev] IHIYNDI08 ONY 3HivE

R = 133.114 in. A = 0.188 n.2

h = 3/16 in. 1 = 0.00055 in.%
b= 1.0 in. (WIDTH) £ = 10 x 105 1b/in.2
L = 34.0 in. v=0.2

H=1.09 in. 1A= 82R = 11.62

8 = 7.3397° b

0.1

0.2 0.3 0.4

VERTICAL DISPLACEMENT AT APEX W, , IN.
Fig. 25. Large deflection analysis of shallow arch under concentrated
load

SET
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R = 100.0 IN.
ve 0,
€= 10/ psi

¥

za Iv'
=
BEAM CROSS-SECTION
v

006 -
LINEAR SOLUTION

® 8 EQUAL ELEMENTS, IAB3D

LARGE DISPLACEMENT RESPONSE
60 EQUAL LOAD STEPS

8 BEAM ELEMENTS

16 THREE-DIMENSIONAL ELEMENTS

NON-DINENSIONAL TIP OEFLECTION
o
)

U
0.2 — R
. |
0.1 R
u w
0.0 R'R,
5.0 6.0 7.0

Pig. 26. Three-dimensional large deflection analysis of a LS°
circular bend
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Y, IN.
s
50|
a0}
a0} I P = 300 1b
zo A(59.2, 40.1, 22.7)
DEFORMED
CONFIGURATION
10}
| - | |
/60 ﬂo.x. "..
/ /
/
/
/7
P = 01b.

A (70.7, 0.0, 29.3)

Deformed configuration of & 45° circular bend
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SOIL PROPERTIES:
p-y CURVE
"yt = kz¢ = 8.333 KSI
ns=3.0
Py ™ 16.666 KPI

Fiz. 28, HPLUxT3 pile used to ckeck soil response



Py = P, = + 1000 KIPS 12.0}—~

PFig. 29.

-12.0}—-

p» KPI

Soil response for cyclic loads in Y, 2 directions

2.0
A, IN.
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Pyy = * 1000 KIPS 12.0}-

"2 .0

Fig. 30.

-12.0—

P ”l

Soil reaponse for cyclic loads in YZ direction

2.0
A, IN.
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k1

HP 14 » 117

e EXPERIMENT RESULTS
e e e NUMERICAL RESULTS

600}~

1ST LOOP, 2ND LOOP 3RD LOOP 4TH LOOP
450
300
150p—

o/ |
0.0 0.1 0.0 0.1 0.2 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.4 0.5
A’ l“o

Fig. 31. Load-settlement curve for HP1Lx1l7 test pile
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300 b— HP14x117
RESULTS
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a omn == NUMERICAL
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0 [ I I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

4 IN.

Fig. 31. (continued)
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O MEASURED VALUES
& 1AB2D VALUES
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GROUMD LINE DISPLACEMENT, IN.

Fig. 32.

Load-displacement curves, pier 1
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LATERAL LOAD, KIPS

300~
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100

O  MEASURED VALUES
& [AB2D VALUES
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0.5 1.0 1.5 2.0. 2.5
GROUND LINE DISPLACEMENT, IN.

Fig. 33. Load-displacement curves, pier 2
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HORIZONTAL LOAD, H, KIPS

145

24 |-

0P~

e € XPERIMENTAL
memememene FINITE ELEMENT

PILE 1-8

| ] | ] 1

0.5 1.0 1.5 2.0 2.5
DEFLECTION AT GROUNOLINE, &, IN.

Fig. 3. Load~deflection curve for piles leA sud leE



HORIZONTAL LORD, H, KIPS
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24
e EXPERIMENTAL
20l— ==——FINITE ELEMENT
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16}~
>
=
12}~ =
#//
PILE z-%-— PILE 2-A
7
8 i
7
4
4
/
4
0 ] | l L
0.0 0.5 1.0 1.5 2.0 2.5

DEFLECTIONS AT GROUNDLINE, 85, (INCHES)

Fig. 35. Load-deflection curve for piles 2-A and 2-B
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FPig. 36. Moment versus depth diagram for pile 1-A
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CONCRETE PILE CAP
AND HYDRAULIC JACK

_

ﬁgémv'b MEDIUM
POORLY GRADED
SAND

FRICTION ANGLE 38° - 40°

BLOW COUNT 5 - 40 blows/ft.
ORY UNIT WEIGHT 103 - 115 pcf

46"
20*

35°¢

54 HEDIUM
24 SILTY cLaY
M2-S3 SANDY SILT

MEDIUK TO DEMSE,
FINE TO COARSE,
POCRLY GRADED
SAND

10*

7ig, 37. GSchematic diagram of the pile and generalized soil pro’i"-



AXIAL LOAD, KIPS

19

200 —

160

= FINITE ELEMENT

120 —
80 -
EXPERIMENTAL
‘o —
0 i ] |
0 1 2 30 1
SETTI.EHENT. Avo IN. LATERAL WEHENT. Aha IN.

Fig. 38.

Load versus zettlement for the axial load rest



LATERAL LOAD, H, KIPS

30

2

18

150

e Quemes EXPERIMENTAL DATA
e emmes FINITE ELEMENT

2 3 4
HORIZONTAL DISP., &p, INCHES

Latersl load versus displacement for the combined
1oad test (witk a 60=kip axial load)
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Fig. 40. Pile deflected shapes (a) after a specified displacement
8p (solid line}, (b) applied vertical load V in case (=)
(dashed line)
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300

266

250

200

150

V. KIPS

100

0 '
0.0 0.5 1.0
Bys IN.

Pig. 41. Vertical load-settlement curves with specified lateral
displacements, &, (0, 1, 2, 3, b in.) for very stiff cle.
(friction pile)
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Vertical load-zettlement curves
with specified displacements,
4, (0,1, 2, 3, 4 in.) for soft
clay (end-bearing pile)

0.0 0.5 1.0

»
Fiz. 3. Vertical I:%d-settlenent curves
wvith specified displacements,
aAn (0, 1, 2, 3, b in.) for loose
sand (end-bearing pile)
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1.0 ‘L\
0.8 }— FINITE ELEMENT AND DESIGN METHOD
g 006 pm—
§= 0.4 SIX I0WA SOILS
002 o
0.0 | L | |
0.0 1.0 2 3.0 4.0

+0
Ah. !“0
Fig. 4b. Nondimensional forms of ultimate vertical load ratio’

versus specified lateral displacements &p, in Iova soils
(friction pile)

1-0“%
0.8 r— )
< mentimemee STIFF CLAY
> 0.4]— . TTU="VERY STIFF CLAY
002 r—
0.0 | 1 ] |
0.0 1.0 2.0 3.0 4.0

Aht l“.
Pig. kSa. HNondimensional forms of ultimate vertical load ratio
' versus specified latersl displacements &, in Iowa soils
(end-bearing pile)



155

1.2
low -
— ;=
008 — ‘ﬁ
o
=
:z 006 -
>
0.4~ ~0- LOOSE SAND
—&~ MEDIUM SAND
== DENSE SAND
002 e
i t | |
0-%:% 1.0 2.0 3.0 4.0
Ah’ IN.

Fig. 4Sp. Nondimensional forms of ultimate vertical lcad ratio
versus specified lateral displacements 8n, in Iova soils
(end-bearing pile)

1.0 o
O N |
008 i s
e T
-l 006 il
>3
004 -
-0  SOFT CLAY
0.2~ Q==  YERY STIFF CLAY
0.0 1 1 |
0.0 1.0 2.0 3.0 4.0
8ps IN.

Pie. L&,

END-BEARING PILE WITH PINNED PILE HEAD

Hordimenzional forms of ultimste verticszl loced ratic



g S. ABUT. ¢ PIER M1 ¢ PIER #2 GPIER #3 ¢ N. ABUT.
| | !
| | !
g'-s 12l | s ' s
43'-3 I 81'-6 T 81°-6 I 39°-1
ELEVATION
1i-e
| ? E 7
it i3
22°'-0 ' 1
§§ i
a7'-4 i H
- * g —é i
g li PROPOSED
4 1 STATE AVE.
22'-0 i i
i H
& <) )
1!,-3 PLAN

Fig. 47. Plan and elevation of bridge

951



1'-8 1'-4 1/2

6 BEAN SPACES @ 6°'-10 1/2 = 41'-3

1'-41/2 1'-8

7 /2"

!

—— | ]

g-s 2| . () ()
PRETENSIONED PRESTRESSED
20 CONCRETE BEAM C30-50
1 OR C80
HALF SECTION NEAR ABUTMENT HALF SECTION NEAR MIDSPAN
g -+ -+ I WA— T -
- 7 SPACES @ 6'-4 = 44°-4 1'-6

ABUTMENT PILE PLAN

Transverse section through deck
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Fig. 49. Section through abutment
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Ir. 50, Mathematical model of the State Avenue bEridze and equivalent

cross-sectional properties
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Fig. 51. Section througn abutmeat and soil rzrofile
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11. APPENDIX A: QUESTIONRAIRE FOR ERIDGES WITH INTEGRAL
ABUTMENTS AND BUMMARY OF RESFONSES
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Part 1. Questionnaire for Bridges with Integral Abutments

1. Do you use bridge designs with integral abutments and without expan-
sion devices, similar to the following sketch? yes. no.
Prizary (one) reason why, or why not:

If the answer is no, skip the remainder of the questionnaire and
plnu geturn.

PORTION OF BEAM
ENCASED IN ABUTMENT

2. With what type of bridges do you use integral abutments?
steel .. prestressed concrete poured-in-place concrete

3. What are your msximum length limits (in feet)?
® 0° -15°  15° -30°  30% skew
steel -
prstressed concrete
poured-in-place
concrete

4. What limits, if any, do you place on the piles? (bearing vs.
friction, soil type etc, )
steel pile
timber pile
concrete pile




3.

6.

7.

10.

183

Vhat type of structural assumption is made for the end of the
gizder?

pinned (moment equel 2er0) e

fixed (rotation equal zero)

= —frestrained by pil@e_ __
partislly restrained """"—{rutuimd by soil on abut.

other assumpt ions

Vhat type of structural sssumption is made for the top of the pile?

pinned (moment equal zero) _ Ia the joint detailed as a pin?
fixed (rotation equal zero) _ l"“““’d by girder S

partislly restraiced restrained by soil on abut.
other assumptions

What loads do you include when calculating pile stress?

thermal ___ temperature range
shriokage __
soil pressure on sbutment face

How is bending accounted for in the pile?

Neglect or sasume bending stresses do not affect pile performsance
Assume location of pile ianflection point and analyze pile as

bending member —
Reduce bending by prebored hole —
Other » - :

What type of backfill material do you specify on the backside of the
sbutaent?

Does the approach pavement rest directly on the sbutmeat?

yes no
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11. Briefly evaluste the performance of integral sbutment dridges in
your state. (Compare to bridges with expansion devices.)

Construction ‘
relative cost more _ same _ less
special prodlems

Maintensace
relative costs more ___ same less ___
special problems

Please return to: Lowell Greimann
. 420 Town Engineering
ITowa State University
Ames, Iovs 50011
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Part 2. Summary of Responses to Questions 1, 2, 3, 5, 6, and 7.

Steel Concrete
Length Length
State Reason Use <30% >30% Use <30 >30% Use
AL Cost Y 300 ——— Y —— 115 Y
AZ Maint Y 253 R Y 330 R Y
CA Cost Y - — Y 320 320 Y
co Cost Y 200 ——— Y koo - Y
cT — Y 200 - N  — ——— N
GA K. Jt Y 300 o Y 300 ——— Y
IA Cost ] - - Y 2&5 - Y
D Cost Y 200 N Y koo R Y
IN Cost R - — Y ——— 100 N
KS B. Jt Y 300 300 Y 350 350 Y
KY Cost N N | Y 300 | Y
¥o B. Jt Y koo — Y hoo hoo Y
Mr Cost Y 300 N Y 100 N Y
m Haint Y 350 — Y 350 —— Y
3B E. Jt Y 300 ——— L | 300 — Y
M B. Jt Y —— e Y -~ ——— Y
BY Cost Y 305 ——— e Nl ——— ———
0" Cost Y 300 300 Y 300 300 Y
oK - Y 200 N Y 200 N Y
OR Bn. Jt Y ] 5 Y 350 300 Y
Cost Y 320 - Y k50 — Y







Prestressed

Pile Loads

Soil

Pressure

Shrinkage

Thermal

Plle
Top
Pixity

Cirder
End
Pixity

Length
<30 >30%

Use

Pin

Pin

.
L0

10

416

hok

Pin

Pin

P. Res

230 Pin

230

Pin

Pin

koo

Fix

Pin

Pin

300

Pin

Pin

koo

Pin

Pin

300

Fix

300
500

Pin

300

Pin

P. Res.

P. Res.

P. Res.

P. Res.

Pin
Pin
Pin
Pin

300
200
350
k50
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Part 2. (Continued)

Steel Concrete
Length Length

State Reason Use <30 >30 Use <30 >30° Use
™ El. J¢t Y 4go koo Y 8c0 800 Y
uT E. J¢t Y 300 250 N ——- ——— Y
VA Simp. Y 22 - N - - Y
vr Cost Y 150 100 N N N N
WA Cost R — ——— Y 350 ——— K
WS Cost Y 200 200 Y 300 N Y
L4 Simp. Y 300 300 Y 500 500 Y
R15 El. J¢ N N N Y 270 160 Y

Y VYes

R No

==« No Response
% Bridge skev in degrees







Prestressed

Pile Loads
Length Girder Pile

End Top Soil
Use <30% >30% Pixity Fixity Thermal Shrinkage Fressure
Y 800 800 Pin Pin ] 14 %
Y 300 250 Pin Pin 1] N n-
Y 4sh —— Pin Pin R N Y
N .} R P. Res. P. Res. Y . | N
R —— “—— Pin Pin n . | .4
Y 300 300 P. Res. Fix n N |
Y 500 500 Pin Pin n N n
Y 300 240 P. Res. Pin K N N
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Summary of Responses to Questions 8, 9, 10, and 11.

Part 2.

Plle

£8%
o
2E2
o
%
3
°
:
£
g g
S| 8
s
3
=
[ -]
s
<]

Gran.

Cohes.

AZ

Perv.

Gran.

Perv.

R4. Fil1

Gran.

Rd. Fi11

Gran.

Rd. P11l

Gran.

Rd., Fill

Gran.

Gran.

Rd. Pi11

Y-8

Rd. Pill

Gran.

Gran.

Gran.

Gran.
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Part 2. (Continued)

Pile
Bending Approach
Pwmt. on
State Neglect Infl. Pt. Prebore Packfill Abutnent
™ Y N N Cran. Y
uT Y N N Gran. Y
VA Y N N Gran. X
vT Y n n - n
WA 4] N N Gran. Y
ws Y n ¥ Gran. N
wY Y n 4 Gran. Y
R15 Y N B Perv. Y
Y Yes
. | Ho

-«= HNHo Response







Maintenance Cost

.

Construction Cost

Approach

Pvmt. on

More Sane Less More Same Less

Abutoient







Part 3. Summary of responses to Question 4.
State Steel Timber Concrete

AL #® * &

A2 9 ksi in Brg., <9 ksi in Fric. Hot used In friction only
CA Assume 5 kips Lat. Resis./pile Same as steel 13 k. Lat. R./pile
co * fiot used Not used

cT Use in bearing — —

GA Use in weak axis Not used Bot used

IA Use in weak axis, Fric. only Use of Br. Length < 150° Not used

1D ® Not used Not used

N Use H-pile or shell — —

XS Nostly used in bearing Nostly used in bearing Mostly used in Brg.
Xy Used in Brg. or friction — Used in friction
NO 10' minimum length Not used Used in friction
NT 9 ksi in bearing Used in friction Not used

ND » ] »

NE Used in weak axis — —

NM Use steel only Hot used Hot used

681



Part 3. (Continued).

State Steel Timber Concrete

Ny bl Not used o

OH » Not used L

oK Use in bearing Hot used Not used

OR » Hot used .

SD » . ®

T * Not used b

ur Use in single rov Use in single row Use in single row
VA Upper portion allowed to flex —— ——

VT 15' minimum length Hot used Not used

WA Use in bearing or friction Use in Brg. or Fric. Use in Brg. or Fric.
ws Use in bearing or friction Use in friction Use in Brg. or Fric.
wy Use in bearing or friction Hot used Not used

R15 Use in weak axis Hot used Hot used

*No limitations

--= NOo response

061
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12, APPENDIX B: QUESTIONNAIRE FOR SKEWED BRIDGES WITH INTEGRAL
ABUTMENTS AND SUMMARY OF RESFONSES
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Part 1. egstionnaire for Skeved Bridges with Integral Abutments.

1.

If you design skeved bridges with integral abutments, which of the
kinds of pile orientations shown below do you use in the integral
abutments? If neither, please sketch the type of pile orientation
you use.

~ . t \\\1. ' = ,\.
L 2
\ 2
. A& \ &

1Y0€ (1) W (2) 1vpe (3) (4)

2.

3.

k.

CENTER LINE PARALLEL ABUTHENT

If you use either orientation, what structural assumptions are rade
for (1) the top of the pile, (2) thermal expension or contraction (one
direction or both directions) and (3) diagonal thermal expansion or
contraction?

When you design skewed bridges with integral sbutments, how do you
treat the approach slab, backfill, and pile cap?

Any additional comments on skewed bridges with integral abutments?



Pert 2. Summary of responsos by the different states.

State Pile Orientation Structursl Assumption
1(a) 1(db) 2(a) 2(b) 3 Pile Head Thermal Exp. & Cont.
fong. Trana. Diag.
“ - - - e - e e - e -
Y Restrained
AZ N N N Y N Roller (due to by sbutment N
roller) csp
cr N N N Y N Hinge N N N
cr N N N N N N N N N
Frec
GA Y N N N N transla- Y Y N
tion; free
rotation;
roller
1A ] N Y N N Fixed Y N N

) N N Y 4 N Fixed Y Y o







Design Consideration

‘ Comment
¢ Cont. Approach Slab Backfill Pile Cap
Diag.
ned Is tied to abut-
tment N ment with dowels N N e
and moves back &
forth with the
superstructure
Battered piles are used
N cow e e to resist the active
earth pressure
“Bridge length > 1) Steel bridge <250';
200' use approach N N concrete bridge <330'
slad 2) No problem in skew
3) Use pre-drilled over-
size hole
N N N N -
“Expansion joint
N between the approach o= il wew
slab & bridge slab
N Neglect ~ Neglect Neglect  Conservative design
1) Expansion joint Use free Rigid A skeved three span steel
waw is specified between draining pile girder bridge with inte-
rigid pavement & ap- granular cap gral abutment was built.
proach slab. material Rotational forces from
2) No special treat- as back- the lateral ecarth pres-
ment is specified for fill sure on the end vall

flexible pavement

caused a failure in the
pier anchor bolts on the
exterior girder
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Part 2. (Continued)

State Pile Orientation Structural Assusption
1€a) 1(d) 2(a) 2(b) 3  Pile Head Thermal Exp. & Cont.

Long. Trans. Diag.

IN N N N Y N Hinge N N N

KS N N Y Y N Hinge Y Y N

Partially
KY Y N N N N restrained Y N e
Ho N N N Y N Fixed N N N







Design Consideration Comment
ont. Approach Slab Backfill Pile Cap
Diag.
20’ spproach slab Use Pile is
N integrally attach- select cast in 150' maximum
ed to bridges graaular pile cap
fill 1 fe.
Uses slab support Backfill Pile caps Cast-in-plate bridges v/
N at backwall and pave- compaction are not the end of steel beams
ment rests on slab w/ has settle- used into abutment concrete,
approx. 30' from end wment just reinforcing to make thes
of vearing surface off end of essentially integral
bridge
No special treatment Special granu- Bridge length 300°, max
com vith flexible pave- lar backfill vow skevs <30°, pile prebored
ment specified for distance of 8' before
bottom of pile cap
Use shear Piles designed for direct
N e —e key on load only: <500’ for
bottoms prestressed bridges,
of pile <400" for steel bridges
cap to
prevent
lateral
movement
of pile cap
on extreme
skews (240°)
Not fixed to abut- Granular
N ment material N €30° skews

as back-
£ill







Part 2. (Continued)

State Pile Orientation Structural Assumption
1(a) 1(d) 2(a) 2(b) 3 Pile Head Thermal Exp. & Cont.
Long. Trans. Diag.
ND N N N Y N Fixed Y Y N
NE Y N N N N wee Y N N
N4 N N Y N N Fixed Y N N
NY N N Y N N o N N N
OH N N Y N N i N N N
oK N W N N N - - - e

OR N N N Y N Hinge .- .—e -







-

fon

Design Consideration

Exp. & Cont.

Comment

Approach Slab Backfill Pile Cap
“Trans. Diag.
Assume approach ~ Select Abutment Hold sKew to a max of 3J0°
Y N slab has no effect granular vall is
material pile cap &
is reinforc-
ed to resist
bending below
super struc-
ture
Same as square bridges 159 skew for in%egral
N N bridges with integral " " abutment
abutments
Used on some bridges Do not use Have built bridges with
N N not used on others specified w—e 13° skew; skew angle neg-
backfill any- lected
more
Construction joint Granular fill 1) Neglect stress caused
N N is provided between behind back- N by rotation; designed to
approach slab & wall & wing take vertical load only
bridge slab walls 2) In skeved bridges,
neglect some twisting in-
duced in piles when
structure deflects. Use
pre-drilled oversize
hole
Tic the approach  Same as non Pile is  0il country pipe lines
N N slab to abutment integral a~ cast in are not used in integral
butments pile cap abutments, because they
for usual 2 ft. are stiffer than H-piles

short bridge

about weak axis

oww oow

- o

Integral abutments only
with zero skews

Approach slab was
tied to pile cap

Pile is
cast in
pile cap
1 fc.

L2 2 4






Part 2. (Continued)

Pile Orientation Structural Assumption

State
1(a) 1(b) 2(a) 2(b) 3 Pile Hesd Thermal Exp. & Cont.

Loog. Trans. Diag.

1) Y N Y N N Fixed Y N N

™ N N N Y N e Y N N

m n P‘ " N Y MD‘G - - oo ene

VA N N Y N N Fixed N N N

vr N N N Y N Fixed Y N N

WA Y N N Y Y Hinge Y N N







Design Consideration

I' Comment
[‘p. & Cont. Approach Slab Backfill Pile Cap
ans . Diag.
Tied w/bridge to
N N prevent erosion - N cnw
of shoulder
A construction joint
N N between the abutment N N ==
backwall & approach
slab
Expansion joint be-  96% of op- 1) Stecl piles used pri-
e - tween approach slabd timum N marily thru granular
& bridge sladb material over bed rock
2) No problem in ther-
mal movements
Used 1'-6" Uniform  Max. skew 10°;
N N No approach sladb of porous wvidth & relatively small move-
backfill w/ parallel ment at each abutment
6" dia. to bridge (23/8")
pipe under- skew
drain
The approach slab is No special Rigid €30° skew
| N anchored to the abut~ treatment pile cap
sent
Approach slab is at- Backfill Pile cap Calculate momeats of in-
N N tached to abutment earth pres- is de- ertia along roadway cen-
with allowance for sure is signed as ter
expansion applied cross beam
normal to on simple
abutment supports

. we
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Part 2, (Continued)

State Pile Orientation Structural Assumption
1(a) 1(b) 2(a) 2(b) 3 Pile Head Thermsl Exp. & Cont. App
fong. Trans. Diag.
Desi
ws N N N Y Y ee- N N N load
Plastic
wY N N N Y N Ninge Y Y N

R1S N N Y N N Hinge N N N







Design Consideration Comment

& & Coant. Approach Slab Backfill Pile Cap
jas. Diag.

Designed for vertical Designed Piles designed for verti-
N N load only - as reia~ cal loads <30° for slabs;
forced €15° for prestressed or
continuous or steel girders
beam over
piling

Assumed to
Y N Neglect Neglect be a mass Max length <300°
attached
to end of
girder

Pile vas

N N oo ——e cast in woe
pile cap
1 ft.
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13. APPENDIX C: IAB3D AND IAB2D PROGRAM INPUT

13.1. IAB3ID Program Input

The program uses a fixed input format, g0 all data must be input
exactly according to the format specified for each card, and the card
groups must appear in sequence according to their number. An ocutline of
the data is given in Table 14. This part gives the order in which the
data appears and vhen it can be omitted. Prior to constructing his own
data sets, the user is advised to peruse the data sets for some sample

problems.

Teble 14. Input data structure overflow

Card Group Deseription When Needed
1 Title Alvays
2 Pile data sets Alvays
3 Soil data sets When soil spring

elements appear
4 Nodal data sets Alvays

The details of the data sets for each data group are as follovs.
The data card for each card group is givern by CARD a.b in which a
represents the card group and b represents the card number.
CARD 1.1 (20A%4)

Cols. FORTRAN Name Descrivtion
1-30 TITLE Any 80 alphanumeric charscters to

identify the problem: these characters



CARD 2.1 (21h)

Cols. PORTRAS Name
1k we
5-8 m

CARD 2.2 (279.3)

Cola. FORTRAN Name
1-9 PIL
10-18 AREAP

CARD 2.3 (Ik, 16, 3712.5)

Cols. FORTRAN Name
1-4 ™

5=10 KODEB

11-22 xC

23-3% YC

35-46 2c
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will be printed sa a heading to the
output.

Description

Number of nodes in 'the structure

Number of elements in the struocture

Dueriﬁicn
Pile length

Pile tip areca

Description
Nodal number

One or more degrees of freedoms at node
IM are specified. There are six inteZers
to define the translations and rotations
in the X, ¥, and Z directions, respect~
ively. O indicates no constraints on
that degree of freedom.

1 indicates that the displacement or
rotation component is specified

X -~ coordinate of node T4

Y =« coordinate of node IM

Z « coordinate of node IM



CARD 2.L4 (13, 3F12.5)

Cols. FORTRAN Name
i-3 M
k15 XX
16-27 p1d
28-39 2K

CARD 2.5 (613, 318.3)

Cols. FORTRAN Name
1-3 M

b6 NODI

T7-9 NoDJ
10-12 MAT

13-16 IAX
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Description

Element number
X - ccordinate of K nocde
Y =« coordinate of X node

Z « coordinate of K node

Description
Henent number

Node I on element IM

Node J on element IM

Member type on clement IM

0 indicates no spring elements attached
1 indicates lateral and vertical spring
elements attached

2 indicates lateral, vertical, and
point spring elements attached

Member cross-sectional shape on element
™

1 indicates rectangular cross section
2 indicates wide flange cross section
(y-axis along the web)

3 indicates wide flange cross section

(z-axis along the web)
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4 indicates arbitrary shape not covered
by any of the above
17=-20 ITEMP Temperature changes on element IM
0 indicates no temperature changes
‘1 indicates tenperature changes
21-28 sw Section width
29-36
37=hb DC Distance from the bottom of the cross

Section depth

section to the centroiad

CARDS 2,5.1-2.5.6 depend on the cross section shapes. IAX = 1 uses
CARD 2.5.1, IAX = 2 uses CARD 2.5.2, IAX = 3 uses CARD 2.5.3, and IAX = &
uses CARDS 2.5.k, 2.5.5, ard 2.5.6.

CARD 2.5.1 to 2.5.h (4F6.3, I3)

Cols. FORTRAN Hame Description

1-8 T Flange thickness or 0.0

9-16 wr Web thickness or 0.0

17-2h wD fection depth

25-32 W Section width, flange width, or 0.0
33-36 .3 The mumber of divisions along the

width for IAX = 1

"3 The number of divisions along the
flange thickness for TAX = 2

n7 The number of divisions along the
flange thickness for JAX = 3



37-39

ko-k2

CARD 2.5.5 (278.3, 9.3, 2r15.5)
FORTRAN Name

Cols.
1-8

926

17-25

26-40

k155

.1

N8

N5, N9

N6, mo

/1]

¥G

AGZ
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The total number of divisions of the
arbitrary cross section

The number of divisions along the depth
for IAX = 1

The number of divisions along the flange
width for IAX = 2

The number of divisions along the flange
vidth for IAX = 3

The number of divisions along the wed
depth for IAX = 2 and 3, respectively
The number of divisions along the wed
thickness for IAX = 2 and 3, respectively

ncacriﬁiou
Distance from centroid of the subelement

to centroid of the cross section along
the z-direction for IAX = b

Distance from centroid of the subelement
to centroid of the cross section along
the y-direction for IAX = &

Area of the subelement for TAX = L
Moment of* inertia of the subelement
with respect to y-axis for IAX = b
Moment of inertia of the subelement

with respect to z-axis for TAX = L



CARD 2.5.6 (PF15.5)
Cols. FORTRAN Name
1-15 XIN
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Deseription
Torsional constant for IAX = L

CARD 2.6 (E12.3, P5.2, E12.3, E12.3, E12.3)

Cols. FORTRAN Nazme
1-12 E

13-17 CcN
18-29 FY
30-41 APH
h2-53 GoD

CARD 3.1 (F15.5, F10.5, F15.5)

Cols. FORTRAN Hame
1-15 881

16-2% CH

26-k0 PH

CARD 3.2 (F15.5, F10.5, F15.5)

Cols. FORTRAN NHame
1-1% 88J
16=25 CL

Description
Initial modulus of elasticity of the

beam~column element

ghape parameter

Yield stress

Coefficient of thermal expansion
Shear modulus

Description
Initiel lateral stiffness in y-direction

for . MAT % O

Shape perameter

Ultinmate lateral soil resistance in
y-direction

Description
Initial lateral stiffness in

z~direction for MAT # O

shape parameter



26-40 PL

CARD 3.3 (F15.5, F10.5, F15.5)

Cols. FORTRAR Name
1-15% SKI

16-25 cv

26-40 PV

CARD 3.k (F15.5, F10.5, F15.5)

Cols. FORTRAN Hame
1-1% SPI

16-25 CP

26-40 PP

CARD 4.1 (I2)

Cols. FORTRAN Name
1~2 LDCASE
CARD 4,2 (12)

Cols. FORTRAN Name
1-2 LDOP

203

Ultimate lateral soil resistance

in z-direction

nelcriggion
Initial vertical stiffness for

MAT % O
shape paraneter

Maxizmum shear stregs

Descriptiocn
Initlial point stiffness

shape parameter
Maximum bearing stress

Description
Load cases

LDCASE = 1 represents the initial
stage
LDCASE = 2 represents the second ome

and the consecutive stages

Description
The total number of degrees of freedoms



CARD 4.3 (F10.5)

Cols. FORTRAN Nanme
1-10 Dcov
CARD b.b (21h)

Cols. FORTRAN Name
1=k JICR

5-8 JTER
CARD k.5 (13)

Cols. FORTRAN Name
1-3 Tno?
CARD 4.6 (79.3)

Cols. FORTRAN Neme
1-9 T

20L

vhich prescribed load/displacement

were applied for each lcad case.

Description

Ugse=prescribed tolerance

Ducrigion

The nunber of increments for each
load case
The maximum number of iterations for

each increment

Description
The degree of freedom of the node

vhich the prescribed load/displacement

vas applied for each load case

Description
The prescribved load/displacenent was

applied at the degree of freedom for

each load case



205

CARD 4.7 (2F9.2)

Cols. FORTRAN Name Description
1.9 TEMP The temperature changes at the top of

the element for each lcad case if
ITEMP $ 0

10-18 TEMP The temperature changes at the bottom
of the element for each load case

of ITEMP 0

13.2. Sample Problems for IAB3D Computer Prograz

Sanple prodlem 1: The large displacement response of a cantilevered
4%° pend beam subjected to a concentrated end load, as shown in FPig. 24,
The input data cards are given in Table 15. Eight equal straight
team-coluzmn olements are used.

Sample problem 2: The soil prodlem presented here is used to check
the soil material nonlinearity and cyclic behavior of the lateral
springs in the direction of LS° with respect to Y and Z directionms.
The input data cards asre given in Table 16,
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Table 15. Input cards for s ¢ prodblem l-a LS° cantilevered bend beam

12348676901234%67090012345678901234%678901234%67890123 CAPD

NO.
YANG3D EXAMPLE 1.1
9 8 2.1
0.000 0.000 2.2
1111111 0.00000 0.00000 0.00000 23
2000000 9.80171 0.00000 0.483183 r %
3000000 19.50903 000000 192147 203
4000000 29.02847 0.00000 4.308907 2.3
8000000 38.26834 0.00000 T«61208 23
6000000 47.13967 0.00000 11.80787 23
7000000 83.88702 0.00000 16.88304 23
8000000 63.43933 0.00000 22.690898 23
9000000 70.71068 0400000 29.20932 24
| 4.90986 5.00000 024077 244
2 14.68%37 19.00000 1.20180 26
3 24.2687% 18.00000 3.11372 24
4 33.64541) 20.00000 8.95901 2.8
S 42.707412 25.00000 9.70996 24
6 5134838 30.00000 14,33046 24
7 69.49818 38.00000 19.77600 244
8 67.07501 40.00000 20.99414 2.4
$t &+ 2 0 1 O 1.000 1000 0.800 2.%
0.000 0.000 1000 1,000 8 8 281
2 2 3 0 1 O 1.000 1000 0500 28
0.000 0.000 1.000 1,000 & 8 2eBel
33 4 0 1 O 31000 1000 0.800 2%
0.000 0.000 1000 1.000 &8 &8 2501
4 4 5 0 1 O 1.000 1000 0.500 2.8
0.000 0.000 1000 1,000 8 8 2801
$ 8§ 6 0 1 O 1000 1.000 0.500 2.8
0.900 0.000 1.000 1,00 8 & 251
6 6 7 0 1 O 1000 1000 0.500 @5
0.000 0.000 1.000 1,000 8 & 2e8el
7T 7 2 6 1 0 1000 1009 0.500 2.5
0.000 0.000 1,000 1.000 8 ¢ 2efet
e 8 ¢ 0 1 O 1.000 1.000 0.500 2.9
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Table 15. (Continued)
0.000 0.000 1.000 1,000 8 & 2e8.1
1.000E40415.,00 1.200E408 6300€-006 8.0002+03 2.6
1.0008+0418.00 1.2008+08 0.500E=06 5.000840Y 2.6
1.000E404185.00 1.200E%08 6.600€=06 B.000E+N03 2.6
1.000840418.00 1.2002408 6.300E~06 8.000E+03 2.6
1.000840418.00 1.2002408 6.8300E~06 5.0008+403 2.6
1 <000E+0415.00 1.200E+08 6.8500E-~08 5.000€403 2.6
1.000E40418.00 12002408 6.800E-06 8.000E+03 2.6
1.000840418.00 1.2008408 6.3008-06 8.0008403 2.6
e 4o}
] he2
1 4.2
0.0} 4.3
1 20 L Y]
48 20 &obd
80 4.8
80 4.9
0.000 4.6
0480 4.6
Table 16. Input cards for sample problem 2 - soil probolem
123456789012345676901234867290012345678901234867290123 CARD
NO.
YANG3ID EXAMPLE 1.}
2 1 . 2.3
180.000 198,895 2.2
1000100 0.00000 000000 0.00000 23
2000100 180.00000 0.00000 0.00000 2.3
1 90.00000 4%.00000 0.00000 28
1 3 2 2 2 0 14.586 13,636 6.818 25
0506 0806 13,635 14,56 2 7 10 1§ 26501
3¢000€E+041%.00 3.5600E+01 6.500E-06 1.200E%05 2,6



9%y L0%°L0L
9%y LOT*LOL
9% LOT°LOL
9%y L0tT°L0L
9y LOI°LOL~
oy LOI°LOL~
9y L01°L0L-
gy 10t°L0L~
o°y 40%°L0L
o°e LOt°LOL
o° L01°40L
9y L0t°L0L
9%y 000°0
oy 000°0
oy 000°0
9*v 000°0
"l 6
-2l ®
14 €
&*y e
-3 6
s*y 8
&y £
o'y 4
-3l -]
S°Y e
s £
12 4
Al 6
a°y e
gy (4
g°y 4
L Ad 02 02
by ot o2
oy oz ot
L Ad ot 1t
£*y $0°0
t 34 ]  J
ey v
F A ] v
EAS ] ]
i1*e
L A4 4 Yo869°0 00000°0T ev969°0
€°¢c LEEEE 9 00000°0% €EEEE°G
2°c L9999°0% 00000°¢ CEEEL 9
L L9999°91 ’ 00000°¢ 131434 34 °]
(penuypquod) °9T ITQBVL

goe



209

13.3. IAB2D Program Input

The structure of the input data in IAB2D computer program is similar
to the input data cards in IAB3D computer program. Hovever, in this
tvo-dimensional version, free format is used for input since the IAB2D
computer progarm vas executed in the VAX system. The input data are
geparated by putting a comma or blank. The following are the line

numbers used to identify the sequence of the input data.

LINE 1 (20Ak)

FORTRAR Name Delcriﬁion
TITLE Any 80 alphanumeric characters to

identify the problem: these charac-
ters w:ul be printed as a heading to

the output
LINE 2
FORTRAN Name Description
e Humber of nodes in the structure
m Number of elements in the structure
JTSO0IL Hode vhere the soil starts
IAY ' Dummy variable which is not used in

the program, however, it can be used

as a control key to control output



LINE 3
FORTRAN Name

PIL

ARZAP
LINE b
FORTRAN Neme

1
KODE (1,J)

YC
LINE §
PORTRAN Mame
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Description
Pile length

Pile tip area

Bucrigicn
Nodal number

One or nore degrees of freedonms at

node 1 are specified. There are

three degrees of freecdons per node to

define the translations in X and Y

directions and the rotation in the

Z direction; respectively, for each

lcad change

0 indicates no constraints on that
degree of freedom

1 indicates that the displacement or

rotation component is specified

X - coordinate of node I

Y « coordinate of node ¥

Description
Flement number
Member cross-sectional shape on

element I



KOD1
HODJ

al

0 indicates arbitrary cross-sectional
ghape

1 indicates wide flange cross section
(vending about the strong axis)

2 indicates wide flange cross sectlon
(bending about the veak axis)

3 indicates rectangular cross section

4 indicates any shape of the cross
section vhich is symmetry vith
respect to neutral axis

%5 control key to generate input
automatically for IAX = L

Temperature changes on element I

0 irndicates no temperature changes

1 indicates temperature changes

Bode I on eclement I

Hode J on element I

Flange thickness or 0.0

Web thickness or 0.0

Section depth

Section width, flange width, or 0.0

Perimeter of the cross section

fection width

Distance from the bottom of the cross

section to the centroid



LINE 5.1
FORTRAN Name

AR

LINE 5.2
FORTRAN Hame

AR,Y,XR

LI¥E 6
FORTRAN Name
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Dcncriggion
Area of the aubelement for IAX=0 on

each element

Distance from centroid of the sub-
element to centroid of the cross
section along the y-direction for
IAX=0 on each eclement

Moment inertia of the subelement with
respect to y-axis for IAX=0 on each

element

Description
The same descriptions as listed in

LINES 1, except only input the data
of the upper half of the cross section
(7 subelements) for IAX=lk on the first
element., It will genersate the data
of the lover half of the cross section
(7 subelements) and the rest of the

elements have the same shapes

Description
Initiel modulus of elasticity of the

beam-column element
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CcN Shape parameter

PY Yield stress

AFH Coefficlient of thermal expansion
LINE 7
FORTRAN MName Description

8sI If the lateral spring elements are

attached, then input initial stiffness.
Othervige input 0.0

CH If the lateral spring elements are

| attched, then input shape paraneter

Othervise input nonzero value

FH If the lateral spring elements are
attached, then input ultimate soil
resistance. Othervise input nonzero

value
LIBE 8
FORTRAN Name Description
8KI,CV PV The same descriptions as listed in

LINE 7, except only for vertical
springs



LINE 9

FORTRAN Name

SPI,CP,PP

LINB 10
FORTRAN Name

LDCHAN

LINE 11
FORTRAN Heme
LDOF

LINE 12
FORTRAN Hame

pcov

LINE 13
FORTRAH Kame

JICR

21k

Description
The saxme description as 1listed in LIKE

T except only for point springs at

the last element

nucripgion
Bumber of load changes

"ICHAR=1 represents the initial stage
LDCHAN=2 represents the second and
the consecutive stages

Description
The total number of degrees of free-

doms which prescribed load/displacement
were applied for each load change

Descriﬂion

User-prescribed tolerance

Description

The number of increments for each

load change
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LINE 1b
FORTRAN Name

IDOF

LINE 15
FORTRAR Name

LINE 16
FORTRAN Name

LISE 17
FORTRAH Hame

INODE
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The naximum number of iterations for

each increment

Description
The degree of freedom at the node

vhich the prescribed load/displacement

vas applied for each load change

Description
The prescribed lcad/displacement

vas applied at the degree of freecdom
for each load change

Description
The temperature changes at the top

and bottom of the element for each
lcad change of ITEMP § 0

Description
The total number of nodes where the

boundary conditions change for LDCHAT
>3
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LINE 18
FORTRAR llame Descripticon
LNODE Rodes where the boundary conditions
change for LDCHAN > 3
LINE 19
FORTRAN Name Description
KODE One or more degrees of freedoms at

node vhere the boundary conditions
change for LDCHAN > 3

13.4. Sample Problem for IAB2D Computer Frogram

Sanple Probiem 3: The State Avenue bridge example is illustrated
here to demonstrate the input data for IAB2D computer program. The

input data are giécn in Table 17.
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- State Avenue bridge

123486789012348678901234%670901234%676901234567890123 LINE
NQO.

*YANGZ2D EXAMOLE STATE AVE,®

21920079}

480.0097.96

1011100.0:870.0

2¢000¢240:00370.0

3:000+480.0:8570.,0

490000720.0¢870.0

80010:960.09570.0

6900001200.0¢8570.0

T000001440.,008570.0

8:00001440,0,528.,0

9¢000+1440,0+480.0

10:000031440.094858,.0

11 +00003440.,0+432.0

$2¢00001440.,00408,0

$13¢000+1440.00384.0

14 +000+1440.0+:336.0

16:000+1440.0,200,.0

16+000015840.00240.0

$7:00091440.0:192.0

18:000,1440,04144.0

19:000:,1840.,N:96.0

20:00001640,0048.9

21:000:1440,0,:0.0

0061500247 e85076¢0:52¢5:71¢00247¢0e71003%83
26 .2903T35:97.49

10.0620:44020163.49

J2.0129¢9:.72¢1090.66

J2.812508.2202234.18 S.2
177.0910.72+20490.,46 Sel
177e501322¢31113,.84 Sel
177e6015:.72+43985,96 Ge?
050.269-3:.59,863,67 Sel
50¢269°10.76%,6040.31} S
80:2060°317.24916393.78 Sel
28.,218759°23:160106154.10 S.1
42 :65025¢726¢11:29122.10 -39 |
66 «59=29.53:56076,06 5.3
60 59=33.53:748%2.02 Se1
20001020307 ¢%50700002¢5071e0:22870¢710:35,53 5

DB PEPIPPEIPBIOIEOIIPIPIIEIIAN

.

U RN
L I 2K
"~ n



Table 17. (Continued)
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28 029¢1¢73%:,97.49

10 .062598:020163.,49
32.80128:¢8.72+1000.66
32.0128:08.22,2234.18
177¢8:10,72+020490.46
177e891322031113.84
1778018.T72+43986,.96
80.260°3.890863.67
8026¢-10.768,6040.31

950 :260-17.94,16391.78
28.218759-23.16018184,10
42 .,05628¢-206.11029122.,10
66 .8+-29.853,58078.08
G6.8:0>33.839740882.02

300020308075 07e0082:85072:092870071¢0038.83

28 02901738097 .49
10.062504,02+163.49
32.0120:8.,72+1090.66
32.80128:8.22+2234,.18
177¢8010.72+20490.46
177e8613¢22931113.04
1778018.72:43985.,968
80:200=3.800863,67
80.260-=30:765:06040.,31
8026921 T7:94016301.78
28.218700-23,16,15154,10
A42.00025:-260.11029122.10
66.00°29.53+58078.08
606:09=33:83.7408082,.,02

80001040807 e00700:82e5071:¢00247e0071:0035.83

20 02991e735997.49
10.0028604.02:2063.49
32.8126e072+1090.66
32.8120,8.22¢2234¢.18
$77¢501072020490.46
177¢6013.22+31113.84
177e¢5018.720439506,96
50:206973:59,863,67
50260~10:.765:6040.3}
50¢260~17:.94016301.78

20 .,21878¢-23.16015154,10
A2 656250-26+11:29122.10
6650729532 959078.006

66 :8¢°33.53974852.02

50001050607 e505¢25052e8071000247:007160036.66

12.288501017022.42
8031250290+70.64
20.437504590613.94

S.1
Gel
Sel
Sel
Sel
Sot
Sel
Gel
Sel
Ge1
8.1
%ol
Bl
8.!

Se1
Sel
Bl
Bel
Se1
Bl
Sel
Sel
81
Se1
Se8
Sel
Sel
Sel

fel
Sel
Gel
Seld
Sol
Sel
Sel
Sel
Sel
Set
Sel
Sel
Se}
Sel

-T2}
5.1
Sel



a9

Table 17. (Continued)

20 e8378:7.0901044 .31 ‘

177:609¢59:16416,79

17785012.09026037.29

177¢6014.89,37876.84

30:6378:=3.78e784,64

39:6378+-1133e8276.58

30.0378+~10,088,14317,28

22 .068785,-24.32:13808.862

3780028027 .26+2781T7.42

89:80=30,66,%6011.48

80.80-34.66+71857.61

600001080 707¢0+0:.250852:.0071¢00247.0072:.0+36.066
12.20891:17022.42

0e312%92.90070.64

20 ,437804.09,0613.,04

20:4375:7:.005 140431

177¢609.69016416.79

177:0912.09:26037.29

177e8018.89:37876.54

39.03789=3.78+754 .04

30.6378+=31:37:5276.51

30.63700=18.88:10317.28

22.96870+~24,.320135908.62

37000628027 200270817.42

859 ¢5¢=3066+86011.40

00.80=34,066,71587,61}
T03¢0070800000000036:0+71:00214:0573:0016.,0
803000080000600000036:0071:00234,0071.0,18.0
0020009010:004108000438:09072910.07803906009:72+%.039
100200010+1200680108000810:972910.078039:.6009.72:8.039
13020003103200:818¢0:850849:72:106078939:6009:72:5.079
12020001201300081600¢810:9:72:30:078039:60,9:.72+5.0™
$135200013018002418:00:21599¢72030:078:+39:6059:72:85.0M19
140200018015 90641850:.21809072010.07080390€6009:.72:8.039
1802000150516 :9:818000418:9¢72030:078¢39:6009+,72:15.079
1620091601700641800.418:59:72010:078939:60:9.72+8.,077
1702000170218 30¢81800:80180+09:72010:078039:.6009:.72:85,032
180200018031900:412:0.418:90,72210:070¢39:6009:72¢5.039
19220001902000:418:¢0428:09¢72050:0780396009:72+¢5.03%2
200220020021000618000410¢9e72210¢078039.6092:72+%5.039
4000:0015:.0012.006.0E~06

4000:0915:,0012:0:6.0E-06

4000.0¢15:0912:0:6.0E~-06

400000915000 12.0:6.0E~06

4000:0015.0:12:.0¢6.0E~06

4000¢0915:0912.006.,0E~06

3400¢0915:0030.206.0E~06

3400:0015:0+210.2:6.0E~06

8.4
S.1
Sel
S.1
Bet
Sel
Sel
Oel
%61
%1
Sel

Se1
Sel
Sel
8.1
Sel

0000000 ONVMAROVIARPRIARAAR
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